Learning to predict agent motions with relationship reasoning is important for many applications. In motion prediction tasks, maintaining motion equivariance under Euclidean geometric transformations and invariance of agent interaction is a critical and fundamental principle. However, such equivariance and invariance properties are overlooked by most existing methods. To fill this gap, we propose EqMotion, an efficient equivariant motion prediction model with invariant interaction reasoning. To achieve motion equivariance, we propose an equivariant geometric feature learning module to learn a Euclidean transformable feature through dedicated designs of equivariant operations. To reason agent's interactions, we propose an invariant interaction reasoning module to achieve a more stable interaction modeling. To further promote more comprehensive motion features, we propose an invariant pattern feature learning module to learn an invariant pattern feature, which cooperates with the equivariant geometric feature to enhance network expressiveness. We conduct experiments for the proposed model on four distinct scenarios: particle dynamics, molecule dynamics, human skeleton motion prediction and pedestrian trajectory prediction. Experimental results show that our method is not only generally applicable, but also achieves state-of-the-art prediction performances on all the four tasks, improving by 24.0/30.1/8.6/9.2%. Code is available at https://github.com/MediaBrain-SJTU/EqMotion.
翻译:在许多应用中,学习预测智能体运动并进行关系推理非常重要。在运动预测任务中,维护欧几里得几何变换下的运动等变性和智能体相互作用的不变性是至关重要且基本的原则。然而,大多数现有方法都忽略了这种等变性和不变性特性。为了填补这一空白,我们提出了EqMotion,一种高效的等变运动预测模型,具有不变的交互推理。为实现运动等变性,我们提出了一个等变几何特征学习模块,通过等变运算的专用设计来学习欧几里得可转换特征。为了推理智能体的交互作用,我们提出了一个不变交互推理模块,实现更稳定的交互建模。为进一步促进更全面的运动特征,我们提出了一个不变模式特征学习模块,学习不变模式特征,该特征与等变几何特征合作,以增强网络的表达能力。我们在四个不同场景下对所提出的模型进行了实验:粒子动力学、分子动力学、人体骨架运动预测和行人轨迹预测。实验结果显示,我们的方法不仅普适性强,而且在所有四个任务中均实现了最先进的预测性能,提高了24.0/30.1/8.6/9.2%。代码可在 https://github.com/MediaBrain-SJTU/EqMotion 上获得。