In audio-visual navigation (AVN), an intelligent agent needs to navigate to a constantly sound-making object in complex 3D environments based on its audio and visual perceptions. While existing methods attempt to improve the navigation performance with preciously designed path planning or intricate task settings, none has improved the model generalisation on unheard sounds with task settings unchanged. We thus propose a contrastive learning-based method to tackle this challenge by regularising the audio encoder, where the sound-agnostic goal-driven latent representations can be learnt from various audio signals of different classes. In addition, we consider two data augmentation strategies to enrich the training sounds. We demonstrate that our designs can be easily equipped to existing AVN frameworks to obtain an immediate performance gain (13.4%$\uparrow$ in SPL on Replica and 12.2%$\uparrow$ in SPL on MP3D). Our project is available at https://AV-GeN.github.io/.


翻译:在视听导航(AVN)中,智能剂需要在其视听感知的基础上,在复杂的3D环境中向一个不断声学对象导航。虽然现有方法试图用精心设计的路径规划或复杂的任务设置来改进导航性能,但没有一种方法改进对未听声音的典型概括,任务设置没有改变。因此,我们提出一种反向学习方法,通过对音频编码器进行正规化来应对这一挑战,从不同类别的各种音频信号中可以学习声纳目标驱动的潜在表现。此外,我们考虑两种数据增强战略来丰富培训声音。我们证明,我们的设计可以很容易地安装到现有的AVN框架,以获得即时性能收益(复制SPL的13.4%\uprrory$和MP3DSPL的12.2%\uprrory$)。我们的项目可在https://AV-GeN.github.io/上查阅。

0
下载
关闭预览

相关内容

IEEE信号处理信函(SPL)是每月一次的存档出版物,旨在快速传播原始的,最先进的想法,并在信号,图像,语音,语言和音频处理方面提供及时、重要的贡献。 官网地址:http://dblp.uni-trier.de/db/journals/spl/
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月18日
Arxiv
0+阅读 · 2022年7月15日
Arxiv
24+阅读 · 2021年6月25日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员