项目名称: 双极性脉冲/负直流双源耦合激励滑动型沿面放电等离子体及其脱除VOCs的研究

项目编号: No.51507026

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 电工技术

项目作者: 姜楠

作者单位: 大连理工大学

项目金额: 22万元

中文摘要: 针对传统沿面放电等离子体延伸区域面积较小、高能电子密度较低等问题,提出采用双极性脉冲/负直流双源耦合激励产生滑动型沿面放电的方法,以提高放电等离子体处理挥发性有机物(VOCs)的能量效率。在沿面放电体系的高压电极两侧分别引入一个第三电极,构成滑动型沿面放电体系;采用双极性纳秒脉冲高压激励原有高压电极,提高放电空间的电场强度,增加高能电子和活性物质数量,采用负直流高压激励第三电极,形成一个平行于绝缘介质表面的电场,通过库仑力诱导沿面流光向外延展,从而在绝缘介质表面形成贯通整个电极间隙的滑动型沿面放电等离子体。利用发射光谱、光腔衰荡光谱、瞬态图像采集和纹影技术对滑动型沿面放电等离子体特性和生成的活性物质进行诊断研究,并结合数值模拟和仿真分析,揭示滑动型沿面放电提高高能电子和活性物质生成效率的机制,探讨滑动型沿面放电等离子体降解VOCs的作用机理,为放电等离子体对环境污染物的控制研究提供参考。

中文关键词: 双极性纳秒脉冲;滑动型沿面放电;低温等离子体;活性物质诊断;VOCs降解

英文摘要: In order to solve the problem of narrow plasma extension area and low electronic density of surface discharge, a method to generate sliding surface discharge driven by bipolar pulse power coupled with negative DC power was proposed, and which was employed to increase the energy efficiency of volatile organic compounds (VOCs). Two third electrodes are arranged on both sides of the original high-voltage electrode in surface discharge system and constitute the sliding surface discharge system. The original high-voltage electrode is powered by a nanosecond bipolar pulse power, which is conductive to enhance the electric field strength, providing more energetic electrons and active species. An electric filed parallel to dielectric barrier can be formed when the third electrode is powered by negative DC power, and then a sliding surface discharge is generated. The sliding surface discharge extends along the surface of dielectric barrier and fully covers the electrode gap. Optical emission spectroscopy, cavity ring-down spectroscopy, technique of instantaneous image grabbing, and schlieren technique are employed to study the characteristics of sliding discharge plasma and diagnosis the active species. The numerical simulation and simulation model methods were also used to analyze the mechanism of improving generation efficiency of energetic electrons and active species by sliding surface discharge plasma. The VOCs degradation mechanism by sliding surface discharge plasma was studied. The investigation of the project can provide references for the research of pollutants treatment by discharge plasma.

英文关键词: Nanosecond bipolar pulse;sliding surface discharge; low temperature plasma;active species diagnosis;VOCs degradation

成为VIP会员查看完整内容
0

相关内容

工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
深度学习理论,55页ppt,Preetum Nakkiran (UCSD)
专知会员服务
32+阅读 · 2021年10月27日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
72+阅读 · 2021年5月28日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
70+阅读 · 2021年3月27日
专知会员服务
42+阅读 · 2021年2月8日
少标签数据学习,54页ppt
专知会员服务
197+阅读 · 2020年5月22日
神经网络,凉了?
CVer
2+阅读 · 2022年3月16日
汽车大厂,「疯抢」产能
36氪
0+阅读 · 2022年2月15日
一文读懂 Pytorch 中的 Tensor View 机制
极市平台
0+阅读 · 2022年1月30日
仅需几天,简约神经网络更快地发现物理定律
机器之心
0+阅读 · 2021年12月25日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
12+阅读 · 2019年4月9日
小贴士
相关VIP内容
工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
深度学习理论,55页ppt,Preetum Nakkiran (UCSD)
专知会员服务
32+阅读 · 2021年10月27日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
72+阅读 · 2021年5月28日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
70+阅读 · 2021年3月27日
专知会员服务
42+阅读 · 2021年2月8日
少标签数据学习,54页ppt
专知会员服务
197+阅读 · 2020年5月22日
相关资讯
神经网络,凉了?
CVer
2+阅读 · 2022年3月16日
汽车大厂,「疯抢」产能
36氪
0+阅读 · 2022年2月15日
一文读懂 Pytorch 中的 Tensor View 机制
极市平台
0+阅读 · 2022年1月30日
仅需几天,简约神经网络更快地发现物理定律
机器之心
0+阅读 · 2021年12月25日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员