Decoding images from brain activity has been a challenge. Owing to the development of deep learning, there are available tools to solve this problem. The decoded image, which aims to map neural spike trains to low-level visual features and high-level semantic information space. Recently, there are a few studies of decoding from spike trains, however, these studies pay less attention to the foundations of neuroscience and there are few studies that merged receptive field into visual image reconstruction. In this paper, we propose a deep learning neural network architecture with biological properties to reconstruct visual image from spike trains. As far as we know, we implemented a method that integrated receptive field property matrix into loss function at the first time. Our model is an end-to-end decoder from neural spike trains to images. We not only merged Gabor filter into auto-encoder which used to generate images but also proposed a loss function with receptive field properties. We evaluated our decoder on two datasets which contain macaque primary visual cortex neural spikes and salamander retina ganglion cells (RGCs) spikes. Our results show that our method can effectively combine receptive field features to reconstruct images, providing a new approach to visual reconstruction based on neural information.
翻译:大脑活动中的解码图像一直是一个挑战。 由于深层学习的发展, 我们存在解决这一问题的工具。 解码图像, 目的是绘制神经钉列到低水平视觉特征和高层次语义信息空间。 最近, 一些关于从神经钉列解码的研究, 然而, 这些研究对神经科学的基础关注较少, 并且很少有研究将可接受字段与视觉图像重建相结合。 在本文中, 我们提出一个具有生物特性的深学习神经网络结构, 以重建钉钉列中的视觉图像。 据我们所知, 我们首次采用了一种将可接受字段属性矩阵整合到损失功能的方法。 我们的模型是神经钉列列列列到图像的终端到终端解码器。 我们不仅将加博过滤器整合成自动编码器, 用来生成图像, 我们还建议了一个可接受字段属性的损失功能。 我们用两个包含基本视觉眼镜的解码器进行了我们的解码器, 并且根据我们的结果, 将一个图像重建功能有效地整合了我们的方法。