In cryptography, we hope a sequence over $\mathbb{Z}_m$ with period $N$ having larger $m$-adic complexity. Compared with the binary case, the computation of 4-adic complexity of knowing quaternary sequences has not been well developed. In this paper, we determine the 4-adic complexity of the quaternary cyclotomic sequences with period 2$p$ defined in [6]. The main method we utilized is a quadratic Gauss sum $G_{p}$ valued in $\mathbb{Z}_{4^N-1}$ which can be seen as a version of classical quadratic Gauss sum. Our results show that the 4-adic complexity of this class of quaternary cyclotomic sequences reaches the maximum if $5\nmid p-2$ and close to the maximum otherwise.
翻译:在加密学中,我们希望有一个超过$mathbb+$m$的序列, 其时期为$100美元, 其复杂性更大。 与二进制案例相比, 已知四环形序列的四进制复杂性的计算尚未完善。 在本文中, 我们确定四环形序列的四进制复杂性, 其期限为2p$, 定义为[ 6] 。 我们使用的主要方法是以$\mathbb+4 ⁇ N-1}美元计价的四进制高价, 其价值为$\mathbb+4 ⁇ N-1}美元。 我们的结果表明, 如果每进制四进制环形序列的四进制复杂度达到最高值, 如果每进五元, 接近最高值, 则达到最高值。