We show that it is decidable, given an automatic sequence $\bf s$ and a constant $c$, whether all prefixes of $\bf s$ have a string attractor of size $\leq c$. Using a decision procedure based on this result, we show that all prefixes of the period-doubling sequence of length $\geq 2$ have a string attractor of size $2$. We also prove analogous results for other sequences, including the Thue-Morse sequence and the Tribonacci sequence. We also provide general upper and lower bounds on string attractor size for different kinds of sequences. For example, if $\bf s$ has a finite appearance constant, then there is a string attractor for ${\bf s}[0..n-1]$ of size $O(\log n)$. If further $\bf s$ is linearly recurrent, then there is a string attractor for ${\bf s}[0..n-1]$ of size $O(1)$. For automatic sequences, the size of the smallest string attractor for ${\bf s}[0..n-1]$ is either $\Theta(1)$ or $\Theta(\log n)$, and it is decidable which case occurs. Finally, we close with some remarks about greedy string attractors.
翻译:我们显示它是可变的, 在自动序列 $\ bf s$ 和恒定 $c$的情况下, 如果所有字符串前缀 $\ bf s$ 都有一个大小的字符串吸引器 $\ leq c$。 使用基于此结果的决定程序, 我们显示的是, 时间跨曲序列 $\ geq 2$ 的所有字符串前缀都有一个大小为 2美元 的字符串吸引器。 我们还证明, 其他序列, 包括 Thue- morse 序列和 Tribonacci 序列, 我们还可以提供字符串吸引器大小为 $\ b s. n- 1 的上下限, 用于不同序列。 例如, 如果 $\ b s s 的字符串吸引器有一定的外观常数, 那么, $% 1 的字符串吸引器就是一个最小的字符串吸引器 。