In this paper, we study the problem of latency and reliability trade-off in ultra-reliable low-latency communication (URLLC) in the presence of decoding complexity constraints. We consider linear block encoded codewords transmitted over a binary-input AWGN channel and decoded with order-statistic (OS) decoder. We first investigate the performance of OS decoders as a function of decoding complexity and propose an empirical model that accurately quantifies the corresponding trade-off. Next, a consistent way to compute the aggregate latency for complexity constrained receivers is presented, where the latency due to decoding is also included. It is shown that, with strict latency requirements, decoding latency cannot be neglected in complexity constrained receivers. Next, based on the proposed model, several optimization problems, relevant to the design of URLLC systems, are introduced and solved. It is shown that the decoding time has a drastic effect on the design of URLLC systems when constraints on decoding complexity are considered. Finally, it is also illustrated that the proposed model can closely describe the performance versus complexity trade-off for other candidate coding solutions for URLLC such as tail-biting convolutional codes, polar codes, and low-density parity-check codes.


翻译:在本文中,我们研究了在解码复杂程度的限制下,超可靠低纬度通信(URLLC)的延迟和可靠性交易问题;我们考虑了在二进制的AWGN频道上传输的线性区块编码编码编码词,用顺序统计解码器解码。我们首先调查OS解码器的性能,作为解码复杂程度的功能,并提出了一个精确量化相应交易的经验模型;接着,提出了一种一致的方法,用以计算复杂程度受限接收器的总延迟度(URLLC),其中也包括了因解码而产生的延迟性;我们考虑了严格的延迟性要求后,解码编码无法在复杂程度受限接收器中被忽略。接下来,根据拟议的模型,引入并解决了与URLC系统设计有关的几个优化问题。我们发现,在考虑解码复杂程度的限制时,解码时间对URLC系统的设计产生了强烈的影响。最后,还说明,拟议的LCRD的低级码和低级码,可以密切描述低级的LCS格式,例如低级的模型,用以说明低级的变价规则与其他候选的公式。

0
下载
关闭预览

相关内容

【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
45+阅读 · 2020年9月28日
【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
15+阅读 · 2020年8月23日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
已删除
将门创投
11+阅读 · 2019年7月4日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Arxiv
0+阅读 · 2021年3月8日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
11+阅读 · 2019年7月4日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Top
微信扫码咨询专知VIP会员