Based on empirical evidence of fast mean-reverting spikes, we model electricity price processes $X+Z^\beta$ as the sum of a continuous It\^o semimartingale $X$ and a a mean-reverting compound Poisson process $Z_t^\beta = \int_0^t \int_{\mathbb{R}} xe^{-\beta(t-s)}\underline{p}(ds,dt)$ where $\underline{p}(ds,dt)$ is Poisson random measure with intensity $\lambda ds\otimes dt$. In a first part, we investigate the estimation of $(\lambda,\beta)$ from discrete observations and establish asymptotic efficiency in various asymptotic settings. In a second part, we discuss the use of our inference results for correcting the value of forward contracts on electricity markets in presence of spikes. We implement our method on real data in the French, Greman and Australian market over 2015 and 2016 and show in particular the effect of spike modelling on the valuation of certain strip options. In particular, we show that some out-of-the-money options have a significant value if we incorporate spikes in our modelling, while having a value close to $0$ otherwise.
翻译:根据快速中位反转峰值的经验证据,我们以连续的 Itço 半半平价美元和平均反转化合物Poisson进程总和来模拟电价(X)+美元,以及平均反转化合物Poisson进程($ ⁇ t ⁇ beta=\ int_0 ⁇ et\\\ int ⁇ mathb{R ⁇ x ⁇ {x ⁇ \\\\\\ sunderline{p}(d,dt)}(d,d)美元)是Poisson随机计量法,其强度为$\ lambda ds\ otimets dt$。在第一部分,我们从离散的观察中调查对$(\ lumbda,\ beta) =\\\\\ int_ int_ 0 ⁇ t\\ =\ int\ math\ =\ int\ maint\ motbbbbr\ =\ lax a image produdeal pral pral rodudeal roal rodude laft laft laft laft laft rof rof laft laft romoductions romoductions lections legal lections lections lections lections) (在2015年和我们某些特定货币的标价值。我们某些钉外的标值,如果有某种货币的标值,则显示某种货币的标值。