By a map we mean a $2$-cell decomposition of a closed compact surface, i.e., an embedding of a graph such that every face is homeomorphic to an open disc. Automorphism of a map can be thought of as a permutation of the vertices which preserves the vertex-edge-face incidences in the embedding. When the underlying surface is orientable, every automorphism of a map determines an angle-preserving homeomorphism of the surface. While it is conjectured that there is no "truly subquadratic" algorithm for testing map isomorphism for unconstrained genus, we present a linear-time algorithm for computing the generators of the automorphism group of a map, parametrized by the genus of the underlying surface. The algorithm applies a sequence of local reductions and produces a uniform map, while preserving the automorphism group. The automorphism group of the original map can be reconstructed from the automorphism group of the uniform map in linear time. We also extend the algorithm to non-orientable surfaces by making use of the antipodal double-cover.
翻译:我们指的地图是指封闭式紧凑表面的2美元细胞分解。 也就是说, 嵌入一个图形, 使每个脸部都具有正正态, 以向开放的圆盘中。 地图的自动形态可被看作保存嵌入中顶端- 边缘- 表面事件的脊柱的变形。 当底表面可以调整时, 地图的每个自貌形态决定着表面的角- 保持原状的自貌形态。 假设没有“ 自然的亚赤道” 算法, 用于测试未受控制基因的映像, 我们用线性算法计算地图的自动形态组的生成器, 以基础表面的基因进行对称。 该算法应用本地降序, 产生统一的地图, 并同时保存自有形态的组。 原始地图的自貌组可以在线性时从统一地图的自变组中重建。 我们还将算法扩展为不可调整的表面, 通过使用双向法进行反向的表面。