We prove new lower bounds for statistical estimation tasks under the constraint of $(\varepsilon, \delta)$-differential privacy. First, we provide tight lower bounds for private covariance estimation of Gaussian distributions. We show that estimating the covariance matrix in Frobenius norm requires $\Omega(d^2)$ samples, and in spectral norm requires $\Omega(d^{3/2})$ samples, both matching upper bounds up to logarithmic factors. The latter bound verifies the existence of a conjectured statistical gap between the private and the non-private sample complexities for spectral estimation of Gaussian covariances. We prove these bounds via our main technical contribution, a broad generalization of the fingerprinting method to exponential families. Additionally, using the private Assouad method of Acharya, Sun, and Zhang, we show a tight $\Omega(d/(\alpha^2 \varepsilon))$ lower bound for estimating the mean of a distribution with bounded covariance to $\alpha$-error in $\ell_2$-distance. Prior known lower bounds for all these problems were either polynomially weaker or held under the stricter condition of $(\varepsilon,0)$-differential privacy.
翻译:----
本文证明了在 $(\varepsilon,\delta)$- 差分隐私约束条件下的统计估计任务的新的下限。首先,我们提出了正态分布的私有协方差估计的紧密下限。我们表明,使用 Frobenius 范数估计协方差矩阵需要 $\Omega(d^2)$ 个样本,而使用谱范数需要 $\Omega(d^{3/2})$ 个样本,两者都匹配上限,直到对数因子。后者的下限验证了私有和非私有样本复杂度之间存在的一个猜想的统计间隙,即正态分布谱估计的情况。我们通过我们的主要技术贡献,即对指数族的指纹方法的广泛推广来证明这些下限。此外,使用 Acharya,Sun 和 Zhang 的私有 Assouad 方法,我们证明了在 $\ell_2$ 距离中具有有界协方差分布的均值估计到 $\alpha$ 误差的紧密 $\Omega(d/(\alpha^2 \varepsilon))$ 下限。这些问题的已知下限要么更弱,要么适用于更严格的 $(\varepsilon,0)$- 差分隐私条件。