We consider a pure-jump stable Cox-Ingersoll-Ross ($\alpha$-stable CIR) process driven by a non-symmetric stable L{\'e}vy process with jump activity $\alpha$ $\in$ (1, 2) and we address the joint estimation of drift, scaling and jump activity parameters from high-frequency observations of the process on a fixed time period. We first prove the existence of a consistent, rate optimal and asymptotically conditionally gaussian estimator based on an approximation of the likelihood function. Moreover, uniqueness of the drift estimators is established assuming that the scaling coefficient and the jump activity are known or consistently estimated. Next we propose easy-toimplement preliminary estimators of all parameters and we improve them by a one-step procedure.
翻译:我们考虑由非对称稳定L\'evy过程驱动的纯跳跃稳定Cox-Ingersoll-Ross ($\alpha$-稳定CIR)过程,其中跳跃的活动指数$\alpha$ $\in$ (1, 2),并且我们从在固定时间段内对过程进行的高频观测中估计出漂移、缩放和跳跃活动参数的联合估计。首先,我们证明了基于似然函数的逼近的一致、最优速率和渐近条件高斯估计器的存在性。此外,唯一性的漂移估计器是建立在缩放系数和跳跃活动数已知或一致估计的前提下的。接下来,我们提出易于实施的所有参数的初步估计器,并通过一步程序对其进行改进。