This paper concerns solving the steady radiative transfer equation with diffusive scaling, using the physics informed neural networks (PINNs). The idea of PINNs is to minimize a least-square loss function, that consists of the residual from the governing equation, the mismatch from the boundary conditions, and other physical constraints such as conservation. It is advantageous of being flexible and easy to execute, and brings the potential for high dimensional problems. Nevertheless, due the presence of small scales, the vanilla PINNs can be extremely unstable for solving multiscale steady transfer equations. In this paper, we propose a new formulation of the loss based on the macro-micro decomposition. We prove that, the new loss function is uniformly stable with respect to the small Knudsen number in the sense that the $L^2$-error of the neural network solution is uniformly controlled by the loss. When the boundary condition is an-isotropic, a boundary layer emerges in the diffusion limit and therefore brings an additional difficulty in training the neural network. To resolve this issue, we include a boundary layer corrector that carries over the sharp transition part of the solution and leaves the rest easy to be approximated. The effectiveness of the new methodology is demonstrated in extensive numerical examples.
翻译:本文涉及用物理知情神经网络(PINNs)解决稳定辐射传输等式,使用物理知情神经网络(PINNs)解决稳定辐射转换等式。 PINNs的想法是最大限度地减少最小损失功能,由治理方程式的剩余部分、与边界条件的不匹配以及诸如保护等其他物理限制组成。它有利于灵活和易于执行,并带来高维问题的可能性。然而,由于规模小,香草 PINNs在解决多级稳定传输方程式方面极不稳定。在本文件中,我们提议以宏观-微观分解法为基础对损失进行新的表述。我们证明,新的损失功能与微Knudsen数字一致稳定,即神经网络解决方案的$L2$-ror值因损失而统一控制。当边界状况为异质时,边界层会出现在扩散极限中,从而给神经网络的培训带来额外的困难。为了解决这个问题,我们建议采用以宏观-微观分解法为基础,我们将新的边界层纠正器统一稳定下来,在快速转换方法上展示了快速转换的方法。