We apply high-order mixed finite element discretization techniques and their associated preconditioned iterative solvers to the Variable Eddington Factor (VEF) equations in two spatial dimensions. The mixed finite element VEF discretizations are coupled to a high-order Discontinuous Galerkin (DG) discretization of the Discrete Ordinates transport equation to form effective linear transport algorithms that are compatible with high-order (curved) meshes. This combination of VEF and transport discretizations is motivated by the use of high-order mixed finite element methods in hydrodynamics calculations at the Lawrence Livermore National Laboratory. Due to the mathematical structure of the VEF equations, the standard Raviart Thomas (RT) mixed finite elements cannot be used to approximate the vector variable in the VEF equations. Instead, we investigate three alternatives based on the use of continuous finite elements for each vector component, a non-conforming RT approach where DG-like techniques are used, and a hybridized RT method. We present numerical results that demonstrate high-order accuracy, compatibility with curved meshes, and robust and efficient convergence in iteratively solving the coupled transport-VEF system and in the preconditioned linear solvers used to invert the discretized VEF equations.
翻译:我们将高顺序混合元素离散技术及其相关的先决条件迭代解解解器应用于两个空间层面的可变Eddington系数(VEF)方程式。混合的有限元素VEF离散技术与分立奥丁酸运输方程式的高度不连续离散(DG)结合,以形成与高顺序(弯曲)间衣相容的有效线性运输算法。VEF和运输离散方法的这种结合是劳伦斯·利物莫尔国家实验室在计算流体动力学时使用高顺序混合元素方法的动机。由于VEF方程式的数学结构,标准Raviart Thomas(RT)混合的有限元素不能用来接近VEF方程式中的矢量变量。相反,我们根据对每种矢量成分使用连续的有限元素、使用DG类技术的不兼容的RT方法以及混合的RT方法,对三种替代方法进行了调查。我们提供了数字结果,表明高顺序混合混合混合的混合元素元素在Lawrence Levermore国家实验室的计算中显示出高顺序准确性准确性、与曲线中与曲线中间的中间中间中间中间置、在使用的离式变式系统中可靠和高效的惯式变离心式平式式式式式式式式式方方程式中,对准。