We study the problem of {\em online} low-rank matrix completion with $\mathsf{M}$ users, $\mathsf{N}$ items and $\mathsf{T}$ rounds. In each round, the algorithm recommends one item per user, for which it gets a (noisy) reward sampled from a low-rank user-item preference matrix. The goal is to design a method with sub-linear regret (in $\mathsf{T}$) and nearly optimal dependence on $\mathsf{M}$ and $\mathsf{N}$. The problem can be easily mapped to the standard multi-armed bandit problem where each item is an {\em independent} arm, but that leads to poor regret as the correlation between arms and users is not exploited. On the other hand, exploiting the low-rank structure of reward matrix is challenging due to non-convexity of the low-rank manifold. We first demonstrate that the low-rank structure can be exploited using a simple explore-then-commit (ETC) approach that ensures a regret of $O(\mathsf{polylog} (\mathsf{M}+\mathsf{N}) \mathsf{T}^{2/3})$. That is, roughly only $\mathsf{polylog} (\mathsf{M}+\mathsf{N})$ item recommendations are required per user to get a non-trivial solution. We then improve our result for the rank-$1$ setting which in itself is quite challenging and encapsulates some of the key issues. Here, we propose \textsc{OCTAL} (Online Collaborative filTering using iterAtive user cLustering) that guarantees nearly optimal regret of $O(\mathsf{polylog} (\mathsf{M}+\mathsf{N}) \mathsf{T}^{1/2})$. OCTAL is based on a novel technique of clustering users that allows iterative elimination of items and leads to a nearly optimal minimax rate.


翻译:我们用$\mathsfsf{M} 用户、$\mathsf{N} 项目和$\mathsf{T} 来研究低端矩阵完成问题。 每次回合中, 算法建议每个用户一个项目, 但它从低端用户项目偏好矩阵中得到一个( nosy) 奖励。 目标是设计一种方法, 以亚线遗憾( $\masfsf{Tf} 美元) 和几乎最佳依赖$\mathsf{M} 用户, $\math{ 美元。 问题很容易被映射到标准多端的土匪问题, 每一个项目都是独立臂的, 但是, 武器与用户之间的相关性没有得到利用。 另一方面, 利用低端奖励矩阵的低级结构是挑战性的问题, 因为低端的节流质( 我们首先看到低级结构可以被利用简单的探索 美元- hal- comm} 用户自己可以确保 Ormals 的结果。</s>

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月27日
Arxiv
14+阅读 · 2019年11月26日
VIP会员
相关资讯
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员