In this report, we propose a collection of methods to make such an approach possible for Euler equations in one and two dimensions. We propose an explicit single-step ALE DG scheme for hyperbolic conservation laws. The scheme considerably reduces the numerical dissipations introduced by the Riemann solvers. We show that the scheme also preserves the constant states for any mesh motion. We then study the effect of mesh quality on the accuracy of the simulations, and based on that, come up with a mesh quality indicator for the ALE DG method. Based on the considerations from the study on mesh quality, we design a local mesh velocity algorithm to compute the motion of the mesh. And finally, we propose a local mesh adaptation algorithm to control the quality of the mesh, and prevent the mesh from degradation.
翻译:在本报告中,我们提出了一系列方法,使Euler等式在一两个维度上能够采用这种方法。我们建议为双曲保护法提出明确的单步ALE DG计划。这个计划大大减少了Riemann解答者提出的数字消散。我们显示,这个计划还保留了任何网状运动的常态。然后我们研究网格质量对模拟准确性的影响,并在此基础上为ALE DG方法提出网格质量指标。根据网格质量研究的考虑,我们设计了本地网格速度算法,以计算网格运动。最后,我们提出了本地网格适应算法,以控制网格质量,防止网格退化。</s>