Interior-point methods offer a highly versatile framework for convex optimization that is effective in theory and practice. A key notion in their theory is that of a self-concordant barrier. We give a suitable generalization of self-concordance to Riemannian manifolds and show that it gives the same structural results and guarantees as in the Euclidean setting, in particular local quadratic convergence of Newton's method. We then analyze a short-step path-following method for optimizing compatible objectives over a convex domain for which one has a self-concordant barrier, and obtain the standard complexity guarantees as in the Euclidean setting. We show that on the positive-definite matrices and other symmetric spaces, the squared distance to a point is a self-concordant function. Our work is motivated by recent progress on scaling problems and non-commutative optimization, and we show that these fit into our framework, yielding algorithms with state-of-the-art complexity guarantees. Furthermore, we show how to apply our methods to computing geometric medians on spaces with constant negative curvature.
翻译:内部点方法提供了一个在理论和实践上行之有效的高度多功能化优化调子框架。 理论中的一个关键概念是自相调和的屏障。 我们给自相调和里曼式的方块以适当的通用, 并表明它提供了与欧几里德式相同的结构结果和保障, 特别是牛顿方法的局部二次组合。 然后我们分析一个短步骤的路径跟踪方法, 优化在有自相调和障碍的调子域上兼容的目标, 并获得欧几里德式设置的标准复杂度保障。 我们在正向定矩阵和其他对称空间上显示, 点的平方距离是一种自相调功能。 我们工作的动力是最近在扩大问题和不调和的优化方面取得的进步。 我们展示了这些与我们的框架相匹配的路径, 产生具有最新复杂度保证的算法。 此外, 我们展示了如何在持续负曲线的空间上应用计算几何测中位中位的方法 。</s>