We present adapted Zhang Neural Networks (AZNN) in which the parameter settings for the exponential decay constant $\eta$ and the length of the start-up phase of basic ZNN are adapted to the problem at hand. Specifically we study experiments with AZNN for time-varying square matrix factorizations as a product of time-varying symmetric matrices and for the time-varying matrix square roots problem. Differing from generally used small $\eta$ values and minimal start-up length phases in ZNN, we adapt the basic ZNN method to work with large or even gigantic $\eta$ settings and arbitrary length start-ups using Euler's low accuracy finite difference formula. These adaptations improve the speed of AZNN's convergence and lower its solution error bounds for our chosen problems significantly to near machine constant or even lower levels. Parameter-varying AZNN also allows us to find full rank symmetrizers of static matrices reliably, for example for the Kahan and Frank matrices and for matrices with highly ill-conditioned eigenvalues and complicated Jordan structures of dimensions from $n = 2$ on up. This helps in cases where full rank static matrix symmetrizers have never been successfully computed before.


翻译:我们提出了经过调整的张内建网(ZNN),在其中,指数衰变常量值值值值值值值值值值和基本 ZNN的启动阶段长度参数值值值值值值值值值调整,以适应当前的问题。具体地说,我们研究与AZNN的实验,用于时间变化平方矩阵因时间变化的对称矩阵和时间变化的矩阵平方根根问题的产物而导致的基质系数乘以时间变化的平方平方基乘数系数乘以时间变化的平方位系数乘以时间变化的平方位系数乘以时间变化的平方位系数乘以时间变化的平方位系数乘以时间变化的平方位乘以时间变化的平方位系数乘以时间变化的平方位乘以时间变化的平方位乘以时间变化的平差值乘以时间变化的平方位乘以时间变化的平方位系数乘以时间变数乘以时间变化的乘以时间差数乘以时间变化的基数乘以大甚至最低的平方位数,例如Khan和弗兰克基质基质基质基件表值和弗兰克基体的基体在2美元的基数前均值和复杂的基体结构均值均值均值和复杂的基体结构均值均值均值均值均值和基体均值均值。</s>

0
下载
关闭预览

相关内容

Beginner's All-purpose Symbolic Instruction Code(初学者通用的符号指令代码),刚开始被作者写做 BASIC,后来被微软广泛地叫做 Basic 。
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2023年4月27日
Arxiv
0+阅读 · 2023年4月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员