We present adapted Zhang Neural Networks (AZNN) in which the parameter settings for the exponential decay constant $\eta$ and the length of the start-up phase of basic ZNN are adapted to the problem at hand. Specifically we study experiments with AZNN for time-varying square matrix factorizations as a product of time-varying symmetric matrices and for the time-varying matrix square roots problem. Differing from generally used small $\eta$ values and minimal start-up length phases in ZNN, we adapt the basic ZNN method to work with large or even gigantic $\eta$ settings and arbitrary length start-ups using Euler's low accuracy finite difference formula. These adaptations improve the speed of AZNN's convergence and lower its solution error bounds for our chosen problems significantly to near machine constant or even lower levels. Parameter-varying AZNN also allows us to find full rank symmetrizers of static matrices reliably, for example for the Kahan and Frank matrices and for matrices with highly ill-conditioned eigenvalues and complicated Jordan structures of dimensions from $n = 2$ on up. This helps in cases where full rank static matrix symmetrizers have never been successfully computed before.
翻译:我们提出了经过调整的张内建网(ZNN),在其中,指数衰变常量值值值值值值值值值值和基本 ZNN的启动阶段长度参数值值值值值值值值值调整,以适应当前的问题。具体地说,我们研究与AZNN的实验,用于时间变化平方矩阵因时间变化的对称矩阵和时间变化的矩阵平方根根问题的产物而导致的基质系数乘以时间变化的平方平方基乘数系数乘以时间变化的平方位系数乘以时间变化的平方位系数乘以时间变化的平方位系数乘以时间变化的平方位系数乘以时间变化的平方位乘以时间变化的平方位系数乘以时间变化的平方位乘以时间变化的平方位乘以时间变化的平差值乘以时间变化的平方位乘以时间变化的平方位系数乘以时间变数乘以时间变化的乘以时间差数乘以时间变化的基数乘以大甚至最低的平方位数,例如Khan和弗兰克基质基质基质基件表值和弗兰克基体的基体在2美元的基数前均值和复杂的基体结构均值均值均值和复杂的基体结构均值均值均值均值均值和基体均值均值。</s>