We study the interpolation analogue of the Hermite-Pad\'e type I approximation problem. We provide its determinant solution and we write down the corresponding integrable discrete system as an admissible reduction of Hirota's discrete Kadomtsev-Petviashvili equations. Apart from the $\tau$-function form of the system we provide its variant, which in the simplest case of dimension two reduces to the non-autonomous discrete-time Toda equations.
翻译:我们研究了Hermite-Pad\'e类I近似问题的内推类比。我们提供了它的决定性解决办法,并记录了相应的不可分离离散系统,作为广田离散的Kadomtsev-Petviashvili等式的可允许的削减。除了该系统的$tau$功能形式外,我们提供了它的变式,在第二维的最简单的例子中,它减少了非自主离散时间的Toda等式。