The Craig interpolation property (CIP) states that an interpolant for an implication exists iff it is valid. The projective Beth definability property (PBDP) states that an explicit definition exists iff a formula stating implicit definability is valid. Thus, the CIP and PBDP reduce potentially hard existence problems to entailment in the underlying logic. Description (and modal) logics with nominals and/or role inclusions do not enjoy the CIP nor the PBDP, but interpolants and explicit definitions have many applications, in particular in concept learning, ontology engineering, and ontology-based data management. In this article we show that, even without Beth and Craig, the existence of interpolants and explicit definitions is decidable in description logics with nominals and/or role inclusions such as ALCO, ALCH and ALCHOI and corresponding hybrid modal logics. However, living without Beth and Craig makes this problem harder than entailment: the existence problems become 2ExpTime-complete in the presence of an ontology or the universal modality, and coNExpTime-complete otherwise. We also analyze explicit definition existence if all symbols (except the one that is defined) are admitted in the definition. In this case the complexity depends on whether one considers individual or concept names. Finally, we consider the problem of computing interpolants and explicit definitions if they exist and turn the complexity upper bound proof into an algorithm computing them, at least for description logics with role inclusions.
翻译:克雷格内插属性 (CIP) 指出, 隐含含义的描述存在一个内含, 如果它有效的话, 隐含隐含定义属性(PBDP) 显示存在一个明确的定义, 如果一个表明隐含定义的公式是有效的, 那么CIP 和 PBDP 将潜在的硬存在问题纳入基本逻辑。 带有名义和(或)作用的描述( 模式) 逻辑与名义和( 或) 混合模式逻辑并不享有 CIP 或 PBDP, 但内含和明确定义有许多应用, 特别是在概念学习、 内含工程和基于肿瘤的数据管理方面。 在本条中, 我们表明, 即使没有Beth和Craig, 内含隐含隐含定义和( 隐含隐含隐含), 内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内,, 内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内, 的内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内含内之