Partial Differential Equations (PDEs) are widely used for modeling the physical phenomena and analyzing the dynamical behavior of many engineering and physical systems. The heat equation is one of the most well-known PDEs that captures the temperature distribution and diffusion of heat within a body. Due to the wider utility of these equations in various safety-critical applications, such as thermal protection systems, a formal analysis of the heat transfer is of utmost importance. In this paper, we propose to use higher-order-logic (HOL) theorem proving for formally analyzing the heat conduction problem in rectangular coordinates. In particular, we formally model the heat transfer as a one-dimensional heat equation for a rectangular slab using the multivariable calculus theories of the HOL Light theorem prover. This requires the formalization of the heat operator and formal verification of its various properties, such as linearity and scaling. Moreover, we use the separation of variables method for formally verifying the solution of the PDEs, which allows modeling the heat transfer in the slab under various initial and boundary conditions using HOL Light.
翻译:在模拟物理现象和分析许多工程和物理系统的动态行为时,广泛使用部分差异方程式(PDEs)来模拟物理现象和分析许多工程和物理系统的动态行为。热方程式是最著名的PDE(PDE)之一,它捕捉到体内热的温度分布和扩散。由于这些方程式在诸如热保护系统等各种安全关键应用中的更广泛用途,因此对热传输进行正式分析至关重要。在本文件中,我们提议使用较高命令逻辑(HOL)的理论来证明正式分析矩形坐标中的热导问题。特别是,我们正式用HOL Light 理论的多变微积分模型模拟热传输作为长方形板的单维热方程式。这要求热操作器正规化并正式核实其各种特性,例如线性与规模。此外,我们使用变量分离法来正式核实PDE的解决方案,从而可以用HOL Light 模型模拟在各种初始和边界条件下的平板的热传输。