Elementary matrices play an important role in linear algebra applications. In this paper, we represent all the elementary matrices of size 2^m\times 2^m using algebraic ZX-calculus. Then we show their properties on inverses and transpose using rewriting rules of ZX-calculus. As a consequence, we are able to depict any matrices of size 2^m\times 2^n by string diagrams without resort to a diagrammatic normal form for matrices as shown in [Wang 2020]. We show how this representation method could be used for representing symmetrising projectors which are essential in AKLT states. By doing so we pave the way towards visualising by string diagrams important matrix technologies deployed in AI especially machine learning.
翻译:在线性代数应用中, 基本矩阵在线性代数应用中起着重要作用 。 在本文中, 我们使用代数 ZX 计算法代表所有大小为 2cmm 2 的初级矩阵 。 然后我们用 ZX 计算法的重写规则在反向显示和转换它们的属性 。 因此, 我们可以用字符串图来描述大小为 2cmm 乘以字符串图2 的矩阵, 不使用[ Wang 2020] 中显示的矩阵的图示常态 。 我们展示了如何使用这种表达法来代表在 AKLT 州必不可少的相配投影仪 。 这样我们就能为通过字符串图来直观展示在AI 特别是机器学习中应用的重要矩阵技术铺平了道路 。