In this paper, we focus on high-order space-time isogeometric discretizations of the linear acoustic wave equation. We deal with smooth approximations in both space and time by employing high-order B-splines of general degree $p$. By exploiting a suitably defined perturbation of order $2p$, we devise a high-order unconditionally stable space-time isogeometric method given by a non-consistent isogeometric formulation. To illustrate the effectiveness of this stabilized isogeometric method, we perform several numerical experiments.
翻译:在本文中,我们专注于线性声波方程的高阶空间-时间等几何离散化。通过使用一般阶数为$p$的高阶B样条,我们处理空间和时间上的平滑逼近。通过采用适当定义的阶数为$2p$的扰动,我们设计了一个高阶的无条件稳定空间-时间等几何方法,该方法采用非一致性等几何形式。为了说明这种稳定的等几何方法的有效性,我们进行了几个数值实验。