We consider a time slotted communication network consisting of a base station (BS), an adversary, $N$ users and $N_s$ communication channels. Both the BS and the adversary have average power constraints and the probability of successful transmission of an update packet depends on the transmission power of the BS and the blocking power of the adversary. We provide a universal lower bound for the average age for this communication network. We prove that the uniform scheduling algorithm with any feasible transmission power choosing policy is $4$ optimal; and the max-age user choosing policy is $2$ optimal. In the second part of the paper, we consider the setting where the BS chooses a transmission policy and the adversary chooses a blocking policy from the set of randomized stationary policies. We show that the Nash equilibrium point may or may not exist for this communication network. We find special cases where the Nash equilibrium always exists.
翻译:我们考虑的是时间档通信网络,由基地站(BS)、敌人、美元用户和美元通信频道组成。 BS和敌人都有平均的电力限制,更新包的成功传输概率取决于BS的传输力和敌人的阻力。我们为这一通信网络的平均使用年限提供了一个普遍较低的界限。我们证明,具有任何可行的传输权力选择政策的统一列表算法是最佳的4美元;最大用户选择政策是最佳的2美元。在论文第二部分,我们考虑了BS选择传输政策以及敌人选择一套随机固定政策阻塞政策的背景。我们证明,对于这一通信网络,纳什平衡点可能存在,也可能不存在。我们发现,在长期存在纳什平衡的特殊情形。