Quantum computing is in an era of limited resources. Current hardware lacks high fidelity gates, long coherence times, and the number of computational units required to perform meaningful computation. Contemporary quantum devices typically use a binary system, where each qubit exists in a superposition of the $\ket{0}$ and $\ket{1}$ states. However, it is often possible to access the $\ket{2}$ or even $\ket{3}$ states in the same physical unit by manipulating the system in different ways. In this work, we consider automatically encoding two qubits into one four-state qu\emph{quart} via a \emph{compression scheme}. We use quantum optimal control to design efficient proof-of-concept gates that fully replicate standard qubit computation on these encoded qubits. We extend qubit compilation schemes to efficiently route qubits on an arbitrary mixed-radix system consisting of both qubits and ququarts, reducing communication and minimizing excess circuit execution time introduced by longer-duration ququart gates. In conjunction with these compilation strategies, we introduce several methods to find beneficial compressions, reducing circuit error due to computation and communication by up to 50\%. These methods can increase the computational space available on a limited near-term machine by up to 2x while maintaining circuit fidelity.


翻译:量子计算处于资源有限的时代。 当前的硬件缺乏高度忠诚的大门、 长期一致性的时间和进行有意义的计算所需的计算单位数量。 当代量子装置通常使用二进制系统, 每种量子都存在于 $\ ket{ 0} 美元和 $\ ket{ 1} 美元的叠加状态中。 但是, 通常可以通过以不同方式操纵系统, 在同一物理单位中访问 $\ ket{ 2} 美元, 甚至$\ ket{ 3} 美元。 在这项工作中, 我们考虑通过 \ emph{ compress 方案, 自动将两平方公尺编码成一个四州ququqemph{quart} 。 我们使用量子最佳控制来设计高效的验证概念门。 充分复制这些编码的量子计算方法。 我们扩展了qubit 计划, 以高效的方式在任意的混合辐射系统中使用由 quitsbits和qqqqquart 组成的系统。 我们考虑通过更长期的正弦化的固定式计算方法, 减少通信和最小化的超电路段执行时间, 通过更近50 的移动的移动的移动化系统, 增加这些方法, 我们可以使用这些计算方法在使用这些方法, 递化的计算方法, 递化到可同时使用这些方法, 递增制成。</s>

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
专知会员服务
25+阅读 · 2021年4月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员