The power prior is a popular class of informative priors for incorporating information from historical data. It involves raising the likelihood for the historical data to a power, which acts as discounting parameter. When the discounting parameter is modelled as random, the normalized power prior is recommended. In this work, we prove that the marginal posterior for the discounting parameter for generalized linear models converges to a point mass at zero if there is any discrepancy between the historical and current data, and that it does not converge to a point mass at one when they are fully compatible. In addition, we explore the construction of optimal priors for the discounting parameter in a normalized power prior. In particular, we are interested in achieving the dual objectives of encouraging borrowing when the historical and current data are compatible and limiting borrowing when they are in conflict. We propose intuitive procedures for eliciting the shape parameters of a beta prior for the discounting parameter based on two minimization criteria, the Kullback-Leibler divergence and the mean squared error. Based on the proposed criteria, the optimal priors derived are often quite different from commonly used priors such as the uniform prior.


翻译:前功率是将历史数据信息纳入历史数据的信息的广受欢迎的信息前功率类别。 它涉及将历史数据的可能性提高到一个能用作贴现参数的动力。 当贴现参数是随机的模型时, 推荐先前的正常功率。 在这项工作中, 我们证明, 通用线性模型贴现参数的边际后功率, 如果历史和当前数据之间存在任何差异, 则会聚集到零点质量, 而当数据完全兼容时, 它不会汇合到一个点质量 。 此外, 我们探索如何为先前的正常功率的贴现参数构建最佳前功率。 特别是, 当历史和当前数据兼容时, 我们有兴趣实现鼓励借贷的双重目标, 并在它们发生冲突时限制借款。 我们提出直观的程序, 以两种最小化标准, 即 Kullback- Leiber 差异 和 平均正方差, 为基础, 得出的最佳前功率往往与先前常用的标准大不相同 。</s>

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2022年4月30日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员