Linear algebra expressions, which play a central role in countless scientific computations, are often computed via a sequence of calls to existing libraries of building blocks (such as those provided by BLAS and LAPACK). A sequence identifies a computing strategy, i.e., an algorithm, and normally for one linear algebra expression many alternative algorithms exist. Although mathematically equivalent, those algorithms might exhibit significant differences in terms of performance. Several high-level languages and tools for matrix computations such as Julia, Armadillo, Linnea, etc., make algorithmic choices by minimizing the number of Floating Point Operations (FLOPs). However, there can be several algorithms that share the same (or have nearly identical) number of FLOPs; in many cases, these algorithms exhibit execution times which are statistically equivalent and one could arbitrarily select one of them as the best algorithm. It is however not unlikely to find cases where the execution times are significantly different from one another (despite the FLOP count being almost the same). It is also possible that the algorithm that minimizes FLOPs is not the one that minimizes execution time. In this work, we develop a methodology to test the reliability of FLOPs as discriminant for linear algebra algorithms. Given a set of algorithms (for an instance of a linear algebra expression) as input, the methodology ranks them into performance classes; algorithms in the same class are statistically equivalent in performance. To this end, we measure the algorithms iteratively until the changes in the ranks converge to a value close to zero. FLOPs are a valid discriminant for an instance if all the algorithms with minimum FLOPs are assigned the best rank; otherwise, the instance is regarded as an anomaly, which can then be used in the investigation of the root cause of performance differences.


翻译:在无数科学计算中起着核心作用的线性代数表达式,通常通过向现有建筑群库(例如由BLAS和LAPACK提供)的调用顺序来计算。一个序列可以确定一个计算策略,即算法,通常是一个线性代数表达式,许多替代算法存在。虽然在数学上等同,但这些算法在性能方面可能表现出显著的差异。一些用于计算矩阵的高级语言和工具,如Julia、Armadillo、Linnea等,通过尽可能减少浮点操作(FLOPs)的数量来作出算法选择。然而,可能有一些与FLOPs相同(或几乎完全相同)数目的算法可以确定一个相同的计算法。这些算法显示执行时间在统计学上和任意选择其中的一种最佳算法。然而,如果FLOPs 的调值是几乎相同的表达式,那么,也有可能通过接近的算法来尽量减少FLOPsalbrial 的算法的演算法,这样算算算算法在进行一个最起码的演算法的演算。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月18日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员