Despite the established convergence theory of Optimistic Gradient Descent Ascent (OGDA) and Extragradient (EG) methods for the convex-concave minimax problems, little is known about the theoretical guarantees of these methods in nonconvex settings. To bridge this gap, for the first time, this paper establishes the convergence of OGDA and EG methods under the nonconvex-strongly-concave (NC-SC) and nonconvex-concave (NC-C) settings by providing a unified analysis through the lens of single-call extra-gradient methods. We further establish lower bounds on the convergence of GDA/OGDA/EG, shedding light on the tightness of our analysis. We also conduct experiments supporting our theoretical results. We believe our results will advance the theoretical understanding of OGDA and EG methods for solving complicated nonconvex minimax real-world problems, e.g., Generative Adversarial Networks (GANs) or robust neural networks training.
翻译:尽管已确立最佳梯度下层加速度(OGDA)和超偏差(EG)方法的趋同理论理论,但对于这些方法在非混凝土环境中的理论保障知之甚少,为了弥合这一差距,本文件首次确定了OGDA和EG方法在非混凝土(NC-SC)和非混凝土(NC-C)环境中的趋同方法的趋同,方法是通过单调超梯度方法的透镜进行统一分析。我们进一步为GDA/OGDA/EG的趋同设定了较低的界限,揭示了我们分析的紧凑性。我们还开展了支持我们理论结果的实验。我们相信,我们的成果将增进对OGDA和EG方法的理论理解,以解决复杂的非混凝土微型世界问题,例如Genemental Adversarial Networks(GANs)或强大的神经网络培训。