Next generation technologies such as smart healthcare, self-driving cars, and smart cities require new approaches to deal with the network traffic generated by the Internet of Things (IoT) devices, as well as efficient programming models to deploy machine learning techniques. Serverless edge computing is an emerging computing paradigm from the integration of two recent technologies, edge computing and serverless computing, that can possibly address these challenges. However, there is little work to explore the capability and performance of such a technology. In this paper, a comprehensive performance analysis of a serverless edge computing system using popular open-source frameworks, namely, Kubeless, OpenFaaS, Fission, and funcX is presented. The experiments considered different programming languages, workloads, and the number of concurrent users. The machine learning workloads have been used to evaluate the performance of the system under different working conditions to provide insights into the best practices. The evaluation results revealed some of the current challenges in serverless edge computing and open research opportunities in this emerging technology for machine learning applications.
翻译:新一代技术,如智能保健、自驾汽车和智能城市等,要求采用新的方法处理由“物”互联网(IoT)装置产生的网络流量,以及部署机器学习技术的有效编程模式。无服务器边缘计算是将两种最新技术,即边缘计算和无服务器计算相结合的一种新兴计算模式,可以应对这些挑战。然而,探索这种技术的能力和性能的工作很少。在本文件中,利用流行的开放源框架,即Kubeless、Open FaAS、Fission和FuncX,对一个没有服务器边缘计算机系统进行全面的绩效分析。实验考虑了不同的编程语言、工作量和并行用户的数量。机器学习工作量被用于评估系统在不同工作条件下的绩效,以提供最佳做法的洞察力。评价结果揭示了目前对无服务器边缘计算的一些挑战,并揭示了这一新兴机器学习应用技术的开放研究机会。