The necessity to deal with uncertain data is a major challenge in decision making. Robust optimization emerged as one of the predominant paradigms to produce solutions that hedge against uncertainty. In order to obtain an even more realistic description of the underlying problem where the decision maker can react to newly disclosed information, multistage models can be used. However, due to their computational difficulty, multistage problems beyond two stages have received less attention and are often only addressed using approximation rather than optimization schemes. Even less attention is paid to the consideration of decision-dependent uncertainty in a multistage setting. We explore multistage robust optimization via quantified linear programs, which are linear programs with ordered variables that are either existentially or universally quantified. Building upon a (mostly) discrete setting where the uncertain parameters -- the universally quantified variables -- are only restricted by their bounds, we present an augmented version that allows stating the discrete uncertainty set via a linear constraint system that also can be affected by decision variables. We present a general search-based solution approach and introduce our solver Yasol that is able to deal with multistage robust linear discrete optimization problems, with final mixed-integer recourse actions and a discrete uncertainty set, which even can be decision-dependent. In doing so, we provide a convenient model-and-run approach, that can serve as baseline for computational experiments in the field of multistage robust optimization, providing optimal solutions for problems with an arbitrary number of decision stages.


翻译:处理不确定数据的必要性是决策过程中的一大挑战。强力优化作为主要范例之一出现,以产生避免不确定性的解决方案。为了更现实地描述决策者能够对新披露的信息作出反应的根本问题,可以使用多阶段模型。然而,由于计算困难,两个阶段以上的多阶段问题没有受到足够重视,而且往往仅使用近似而非优化办法加以解决。在多阶段环境下,我们更不注意考虑依赖决定的不确定性。我们探索通过量化的线性程序多阶段强力优化,这种程序是线性程序,有固定变量存在或普遍量化的线性方案。在(最主要是)不固定的环境下,决策者可以对新披露的参数 -- -- 普遍量化变量 -- -- 仅受其界限的限制,我们提出了一个扩大版本,允许通过直线性制约系统来说明离散的不确定性,这种系统也可能受到决定变量的影响。我们提出了一个一般的基于搜索的解决办法,并引入我们的Yasol软件解决方案,能够处理多阶段稳健的线性离散优化问题,最后混合的追索行动是或普遍量化的。在一个不固定的模型基础上的模型中,为我们提供了一个不固定的模型,可以提供一个不固定的实地的模型。

0
下载
关闭预览

相关内容

专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月2日
Arxiv
64+阅读 · 2021年6月18日
VIP会员
相关VIP内容
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员