Differentiable physics enables efficient gradient-based optimizations of neural network (NN) controllers. However, existing work typically only delivers NN controllers with limited capability and generalizability. We present a practical learning framework that outputs unified NN controllers capable of tasks with significantly improved complexity and diversity. To systematically improve training robustness and efficiency, we investigated a suite of improvements over the baseline approach, including periodic activation functions, and tailored loss functions. In addition, we find our adoption of batching and an Adam optimizer effective in training complex locomotion tasks. We evaluate our framework on differentiable mass-spring and material point method (MPM) simulations, with challenging locomotion tasks and multiple robot designs. Experiments show that our learning framework, based on differentiable physics, delivers better results than reinforcement learning and converges much faster. We demonstrate that users can interactively control soft robot locomotion and switch among multiple goals with specified velocity, height, and direction instructions using a unified NN controller trained in our system.
翻译:差异物理学可以使神经网络控制器(NN)实现高效的梯度优化。然而,现有工作通常只提供能力有限和通用的NN控制器。我们提出了一个实用学习框架,使NNN控制器能够实现统一,能够完成大幅改进复杂性和多样性的任务。为了系统地提高培训的稳健性和效率,我们调查了基线方法的一系列改进,包括定期激活功能和量身定做的丢失功能。此外,我们发现在培训复杂的移动任务方面采用了批量和亚当优化器。我们评估了我们关于不同大规模循环和材料点方法(MPM)的模拟框架,具有挑战性的流动任务和多机器人设计。实验表明,基于不同物理学的我们的学习框架比强化学习和聚合速度快得多。我们证明,用户可以互动地控制软机器人移动,并在具有特定速度、高度和方向指示的多个目标之间转换,使用我们系统培训的统一的NN控制器。