Compared with single-label image classification, multi-label image classification is more practical and challenging. Some recent studies attempted to leverage the semantic information of categories for improving multi-label image classification performance. However, these semantic-based methods only take semantic information as type of complements for visual representation without further exploitation. In this paper, we present a innovative path towards the solution of the multi-label image classification which considers it as a dictionary learning task. A novel end-to-end model named Deep Semantic Dictionary Learning (DSDL) is designed. In DSDL, an auto-encoder is applied to generate the semantic dictionary from class-level semantics and then such dictionary is utilized for representing the visual features extracted by Convolutional Neural Network (CNN) with label embeddings. The DSDL provides a simple but elegant way to exploit and reconcile the label, semantic and visual spaces simultaneously via conducting the dictionary learning among them. Moreover, inspired by iterative optimization of traditional dictionary learning, we further devise a novel training strategy named Alternately Parameters Update Strategy (APUS) for optimizing DSDL, which alteratively optimizes the representation coefficients and the semantic dictionary in forward and backward propagation. Extensive experimental results on three popular benchmarks demonstrate that our method achieves promising performances in comparison with the state-of-the-arts. Our codes and models are available at https://github.com/ZFT-CQU/DSDL.
翻译:与单标签图像分类相比,多标签图像分类更实际,更具挑战性。最近的一些研究试图利用分类的语义信息来提高多标签图像分类性能。然而,这些语义法只将语义信息作为视觉表达方式的补充,而无需进一步加以利用。在本文中,我们提出了一个创新的路径,以解决多标签图像分类,认为它是一种字典学习任务。设计了一个名为深语义词典学习(DSDL)的新颖端到端模式。在DSDL中,应用自动编码器从类级语义分类生成语义词典词典,然后使用这种词典来代表Cultural Neural网络(CNN)提取的视觉特征,而无需进一步加以利用。DSDL提供一种简单但优美的方法,通过在他们之间进行词典学习,同时利用和调校正词典学习,我们还设计了一个名为“替代参数更新战略”(APUS)的新培训战略,用于在SDD-LS-S-S-SDS-SDS-S-SDS-SDAregregy Syal Syal Syal real realiviolal 上,在可优化的Syal-Syal-Syalviolviolalpalpal-Syal-Syalbalbalbal-Sy-Salbalpaldalbalpalbaldalds 和Supol 3SDalbals-SBorpal-SDalsalpalbalbals 上,在我们的SBressalbalbals 和SBL 和SDRMs 3SD-SBL-SDML-SML-SBalsalsals-SBL-SBals 和SBalsalsalsalsalbalbalbaldaldaldaldaldaldals 上,在SBaldals-SBals 和SBalsals-SMSMSMSMSBals 3SML 3SAs 和SMSMSMs 和S