人类从反馈中学习得最好——我们被鼓励采取导致积极结果的行动,而被具有消极后果的决定所阻碍。这种强化过程可以应用到计算机程序中,使它们能够解决经典编程所不能解决的更复杂的问题。深度强化学习实战教你基本概念和术语的深度强化学习,以及实践技能和技术,你将需要把它落实到你自己的项目。

对这项技术

深度强化学习是一种机器学习的形式,人工智能智能体从自己的原始感官输入中学习最优行为。系统感知环境,解释其过去决策的结果,并使用这些信息优化其行为以获得最大的长期回报。众所周知,深度强化学习对AlphaGo的成功做出了贡献,但这并不是它所能做的全部!更令人兴奋的应用程序等待被发现。让我们开始吧。

关于这本书

深度强化学习实战中教你如何编程的代理人,学习和改善的直接反馈,从他们的环境。您将使用流行的PyTorch深度学习框架构建网络,以探索从深度Q-Networks到策略梯度方法再到进化算法的强化学习算法。在你进行的过程中,你会将你所知道的应用到实际操作项目中,比如控制模拟机器人、自动化股票市场交易,甚至构建一个可以下围棋的机器人。

里面有什么

  • 将问题组织成马尔可夫决策过程
  • 深度Q网络、策略梯度法、进化算法等流行算法及其驱动算法的直觉
  • 将强化学习算法应用于实际问题
成为VIP会员查看完整内容
0
183

相关内容

强化学习(RL)是机器学习的一个领域,与软件代理应如何在环境中采取行动以最大化累积奖励的概念有关。除了监督学习和非监督学习外,强化学习是三种基本的机器学习范式之一。 强化学习与监督学习的不同之处在于,不需要呈现带标签的输入/输出对,也不需要显式纠正次优动作。相反,重点是在探索(未知领域)和利用(当前知识)之间找到平衡。 该环境通常以马尔可夫决策过程(MDP)的形式陈述,因为针对这种情况的许多强化学习算法都使用动态编程技术。经典动态规划方法和强化学习算法之间的主要区别在于,后者不假设MDP的确切数学模型,并且针对无法采用精确方法的大型MDP。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

Elm不仅仅是一种前沿的编程语言,它还为开发人员提供了一个升级构建web应用程序的方式的机会。

Elm in Action教会读者如何使用Elm语言构建设计良好、性能良好的web应用程序。在阅读过程中,他们将学习一个名为Photo Groove的应用程序,该程序将向他们展示如何构建应用程序的域和行为,如何维护一个令人愉快的模块化架构,以及如何使用Elm语言交付高质量的产品。

https://www.manning.com/books/elm-in-action

成为VIP会员查看完整内容
0
27

地址:

https://www.apress.com/gp/book/9781484251232

利用MATLAB的强大功能来应对深度学习的挑战。本书介绍了深度学习和使用MATLAB的深度学习工具箱。您将看到这些工具箱如何提供实现深度学习所有方面所需的完整功能集。

在此过程中,您将学习建模复杂的系统,包括股票市场、自然语言和仅确定角度的轨道。您将学习动力学和控制,并使用MATLAB集成深度学习算法和方法。您还将使用图像将深度学习应用于飞机导航。

最后,您将使用惯性测量单元对ballet pirouettes进行分类,并使用MATLAB的硬件功能进行实验。

你会学到什么

  • 使用MATLAB探索深度学习,并将其与算法进行比较
  • 在MATLAB中编写一个深度学习函数,并用实例进行训练
  • 使用与深度学习相关的MATLAB工具箱
  • 实现托卡马克中断预测

这本书是给谁看的:

工程师、数据科学家和学生想要一本关于使用MATLAB进行深度学习的例子丰富的书。

成为VIP会员查看完整内容
0
86

题目:Applied Reinforcement Learning with Python With OpenAI Gym, Tensorflow, and Keras

深入研究强化学习算法,并通过Python将它们应用到不同的用例中。这本书涵盖了重要的主题,如策略梯度和Q学习,并利用框架,如Tensorflow, Keras,和OpenAI Gym。

Python中的应用增强学习向您介绍了强化学习(RL)算法背后的理论和用于实现它们的代码。您将在指导下了解OpenAI Gym的特性,从使用标准库到创建自己的环境,然后了解如何构建强化学习问题,以便研究、开发和部署基于rl的解决方案。

你将学习:

  • 用Python实现强化学习
  • 使用AI框架,如OpenAI Gym、Tensorflow和Keras
  • 通过云资源部署和培训基于增强学习的解决方案
  • 应用强化学习的实际应用

这本书是给谁看的: 数据科学家、机器学习工程师和软件工程师熟悉机器学习和深度学习的概念。

地址:

https://www.springerprofessional.de/en/applied-reinforcement-learning-with-python/17098944

目录:

第1章 强化学习导论

在过去的一年里,深度学习技术的不断扩散和发展给各个行业带来了革命性的变化。毫无疑问,这个领域最令人兴奋的部分之一是强化学习(RL)。这本身往往是许多通用人工智能应用程序的基础,例如学习玩视频游戏或下棋的软件。强化学习的好处是,假设可以将问题建模为包含操作、环境和代理的框架,那么代理就可以熟悉大量的任务。假设,解决问题的范围可以从简单的游戏,更复杂的3d游戏,自动驾驶汽车教学如何挑选和减少乘客在各种不同的地方以及教一个机械手臂如何把握对象和地点在厨房柜台上。

第二章 强化学习算法

读者应该知道,我们将利用各种深度学习和强化学习的方法在这本书。然而,由于我们的重点将转移到讨论实现和这些算法如何在生产环境中工作,我们必须花一些时间来更详细地介绍算法本身。因此,本章的重点将是引导读者通过几个强化学习算法的例子,通常应用和展示他们在使用Open AI gym 不同的问题。

第三章 强化学习算法:Q学习及其变体

随着策略梯度和Actor-Critic模型的初步讨论的结束,我们现在可以讨论读者可能会发现有用的替代深度学习算法。具体来说,我们将讨论Q学习、深度Q学习以及深度确定性策略梯度。一旦我们了解了这些,我们就可以开始处理更抽象的问题,更具体的领域,这将教会用户如何处理不同任务的强化学习。

第四章 通过强化学习做市场

除了在许多书中发现的强化学习中的一些标准问题之外,最好看看那些答案既不客观也不完全解决的领域。在金融领域,尤其是强化学习领域,最好的例子之一就是做市。我们将讨论学科本身,提出一些不基于机器学习的基线方法,然后测试几种基于强化学习的方法。

第五章 自定义OpenAI强化学习环境

在我们的最后一章,我们将专注于Open AI Gym,但更重要的是尝试理解我们如何创建我们自己的自定义环境,这样我们可以处理更多的典型用例。本章的大部分内容将集中在我对开放人工智能的编程实践的建议,以及我如何编写这个软件的建议。最后,在我们完成创建环境之后,我们将继续集中精力解决问题。对于这个例子,我们将集中精力尝试创建和解决一个新的视频游戏。

成为VIP会员查看完整内容
0
96

指南简介

最近神经网络在计算机视觉、机器翻译和时间序列预测等问题上得到了重大突破,但它们也可以与强化学习算法相结合,创造出像AlphaGo这样令人震惊的东西。强化学习指的是面向目标的算法,它学习如何获得复杂的目标(目标)或在许多步骤中沿着特定的维度最大化;例如,在许多动作中最大化在游戏中赢得的分数。他们可以从一块白板开始,在适当的条件下,他们可以达到超人的表现。就像一个被鞭打和糖果激励的孩子,当他们做出错误的决定时,这些算法会受到惩罚,当他们做出正确的决定时,这些算法会得到奖励——这就是强化。包含深度学习的强化算法可以在围棋游戏中击败世界冠军,也可以在玩许多阿塔里电子游戏的人类专家。虽然这听起来微不足道,但与他们之前的成就相比,这是一个巨大的进步,目前的技术正在迅速进步。强化学习解决了将即时行为与其产生的延迟回报关联起来的难题。与人类一样,强化学习算法有时需要等待一段时间才能看到决策的成果。它们在延迟返回的环境中运行,在这种环境中,很难理解在许多时间步骤中哪些操作会导致哪些结果。强化学习算法可以期望在更模糊、真实的环境中执行得越来越好,同时可以从任意数量的可能动作中进行选择,而不是从视频游戏的有限选项中进行选择。也就是说,随着时间的推移,我们期望它们对实现现实世界中的目标是有价值的。Skymind将深度强化学习应用于真实世界用例的模拟,以帮助企业优化他们如何建立工厂、员工呼叫中心、建立仓库和供应链以及管理流量。

内容目录

  • 强化学习定义
  • 强化学习的领域选择
  • 状态-行为对&报酬的复概率分布
  • 机器学习与时间的关系
  • 神经网络与深度强化学习
  • 模拟与深度强化学习
  • 脚注
成为VIP会员查看完整内容
A Beginner's Guide to Deep Reinforcement Learning _ Pathmind.pdf
0
102
小贴士
相关VIP内容
专知会员服务
161+阅读 · 2020年4月19日
专知会员服务
27+阅读 · 2020年4月14日
【强化学习】深度强化学习初学者指南
专知会员服务
102+阅读 · 2019年12月14日
MIT新书《强化学习与最优控制》
专知会员服务
142+阅读 · 2019年10月9日
相关论文
Akash Mittal,Anuj Dhawan,Sourav Medya,Sayan Ranu,Ambuj Singh
8+阅读 · 2019年3月8日
Jingkang Wang,Yang Liu,Bo Li
3+阅读 · 2018年10月5日
Hierarchical Deep Multiagent Reinforcement Learning
Hongyao Tang,Jianye Hao,Tangjie Lv,Yingfeng Chen,Zongzhang Zhang,Hangtian Jia,Chunxu Ren,Yan Zheng,Changjie Fan,Li Wang
6+阅读 · 2018年9月25日
Image Captioning based on Deep Reinforcement Learning
Haichao Shi,Peng Li,Bo Wang,Zhenyu Wang
7+阅读 · 2018年9月13日
Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning
Tom Zahavy,Matan Haroush,Nadav Merlis,Daniel J. Mankowitz,Shie Mannor
4+阅读 · 2018年9月6日
Relational Deep Reinforcement Learning
Vinicius Zambaldi,David Raposo,Adam Santoro,Victor Bapst,Yujia Li,Igor Babuschkin,Karl Tuyls,David Reichert,Timothy Lillicrap,Edward Lockhart,Murray Shanahan,Victoria Langston,Razvan Pascanu,Matthew Botvinick,Oriol Vinyals,Peter Battaglia
5+阅读 · 2018年6月28日
Yaodong Yang,Rui Luo,Minne Li,Ming Zhou,Weinan Zhang,Jun Wang
3+阅读 · 2018年6月12日
Ermo Wei,Drew Wicke,David Freelan,Sean Luke
10+阅读 · 2018年4月25日
Shikun Liu,Edward Johns,Andrew J. Davison
16+阅读 · 2018年3月28日
Lijun Li,Boqing Gong
5+阅读 · 2018年3月21日
Top