We introduce the Conditional Independence Regression CovariancE (CIRCE), a measure of conditional independence for multivariate continuous-valued variables. CIRCE applies as a regularizer in settings where we wish to learn neural features $\varphi(X)$ of data $X$ to estimate a target $Y$, while being conditionally independent of a distractor $Z$ given $Y$. Both $Z$ and $Y$ are assumed to be continuous-valued but relatively low dimensional, whereas $X$ and its features may be complex and high dimensional. Relevant settings include domain-invariant learning, fairness, and causal learning. The procedure requires just a single ridge regression from $Y$ to kernelized features of $Z$, which can be done in advance. It is then only necessary to enforce independence of $\varphi(X)$ from residuals of this regression, which is possible with attractive estimation properties and consistency guarantees. By contrast, earlier measures of conditional feature dependence require multiple regressions for each step of feature learning, resulting in more severe bias and variance, and greater computational cost. When sufficiently rich features are used, we establish that CIRCE is zero if and only if $\varphi(X) \perp \!\!\! \perp Z \mid Y$. In experiments, we show superior performance to previous methods on challenging benchmarks, including learning conditionally invariant image features.
翻译:我们引入了“有条件独立回归 ” (CIRCE), 这是一种衡量多变连续价值变量变量的有条件独立度标准。 CIRCE 在我们希望学习以美元(X)美元为美元(X)美元的数据的神经特征以估计一个目标美元美元,同时有条件地独立于以美元为美元给给给美元的转移方美元美元。 假定美元和美元都是连续估值,但相对较低维度,而美元及其特征可能是复杂和高度的。 相关设置包括域-异性学习、公平性和因果学习。 在我们希望学习以美元(X美元)为美元(X美元)的神经特性以估计一个目标美元(美元)的情况下,CIRCRC,程序需要从美元到Z$(X美元)的内内核特性(x美元),用于估算一个目标美元(美元),而同时有条件的美元(X)美元和美元(美元)独立,这是具有吸引力估计属性和一致性保证的一种可能。相比之下,早期的特征依赖措施要求每一步都有多重回归,导致更严重的偏差和差异; 和差异; 以及 更高级的计算方法,如果使用足够的C,则需要确定C的绩效,只有C的C的,我们才能确定。