The synthetic control method has become a widely popular tool to estimate causal effects with observational data. Despite this, inference for synthetic control methods remains challenging. Often, inferential results rely on linear factor model data generating processes. In this paper, we characterize the conditions on the factor model primitives (the factor loadings) for which the statistical risk minimizers are synthetic controls (in the simplex). Then, we propose a Bayesian alternative to the synthetic control method that preserves the main features of the standard method and provides a new way of doing valid inference. We explore a Bernstein-von Mises style result to link our Bayesian inference to the frequentist inference. For linear factor model frameworks we show that a maximum likelihood estimator (MLE) of the synthetic control weights can consistently estimate the predictive function of the potential outcomes for the treated unit and that our Bayes estimator is asymptotically close to the MLE in the total variation sense. Through simulations, we show that there is convergence between the Bayes and frequentist approach even in sparse settings. Finally, we apply the method to re-visit the study of the economic costs of the German re-unification and the Catalan secession movement. The Bayesian synthetic control method is available in the bsynth R-package.


翻译:合成控制方法已成为利用观测数据估计因果关系的一个广为人知的工具。尽管如此,合成控制方法的推论仍然具有挑战性。通常,推断结果依赖于线性要素模型数据生成过程。在本文中,我们定性了统计风险最小化器是合成控制(简单x)的元素模型原始(要素负荷)的条件。然后,我们提出了一种替代合成控制方法的贝叶斯替代方法,该方法保留了标准方法的主要特征,提供了一种新的有效推断方法。我们探索了一种伯恩斯坦-冯·米斯风格的结果,将我们的贝叶斯理论推论与经常性推断联系起来。对于线性要素模型框架,我们表明合成控制重量的最大可能性估计器(要素负荷器)可以持续估计被处理单位潜在结果的预测功能(简单x)。然后,我们提出了一种替代合成控制方法,在完全变异的意义上保持了标准方法的主要特征,并提供了一种新的推论方法。我们通过模拟,表明海湾与经常性推论方法之间的趋同,甚至在稀少的环境下,我们的巴伊斯和经常性推论与经常性推论也表明,对于线性要素模型的推断框架框架框架,我们表明合成控制重量重量重量重量重量重量重量重量重量重量重量重量重量值的最大估计方法可以持续估计,我们将采用可重新研究方法。在德国的合成控制方法。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员