The synthetic control method has become a widely popular tool to estimate causal effects with observational data. Despite this, inference for synthetic control methods remains challenging. Often, inferential results rely on linear factor model data generating processes. In this paper, we characterize the conditions on the factor model primitives (the factor loadings) for which the statistical risk minimizers are synthetic controls (in the simplex). Then, we propose a Bayesian alternative to the synthetic control method that preserves the main features of the standard method and provides a new way of doing valid inference. We explore a Bernstein-von Mises style result to link our Bayesian inference to the frequentist inference. For linear factor model frameworks we show that a maximum likelihood estimator (MLE) of the synthetic control weights can consistently estimate the predictive function of the potential outcomes for the treated unit and that our Bayes estimator is asymptotically close to the MLE in the total variation sense. Through simulations, we show that there is convergence between the Bayes and frequentist approach even in sparse settings. Finally, we apply the method to re-visit the study of the economic costs of the German re-unification and the Catalan secession movement. The Bayesian synthetic control method is available in the bsynth R-package.
翻译:合成控制方法已成为利用观测数据估计因果关系的一个广为人知的工具。尽管如此,合成控制方法的推论仍然具有挑战性。通常,推断结果依赖于线性要素模型数据生成过程。在本文中,我们定性了统计风险最小化器是合成控制(简单x)的元素模型原始(要素负荷)的条件。然后,我们提出了一种替代合成控制方法的贝叶斯替代方法,该方法保留了标准方法的主要特征,提供了一种新的有效推断方法。我们探索了一种伯恩斯坦-冯·米斯风格的结果,将我们的贝叶斯理论推论与经常性推断联系起来。对于线性要素模型框架,我们表明合成控制重量的最大可能性估计器(要素负荷器)可以持续估计被处理单位潜在结果的预测功能(简单x)。然后,我们提出了一种替代合成控制方法,在完全变异的意义上保持了标准方法的主要特征,并提供了一种新的推论方法。我们通过模拟,表明海湾与经常性推论方法之间的趋同,甚至在稀少的环境下,我们的巴伊斯和经常性推论与经常性推论也表明,对于线性要素模型的推断框架框架框架,我们表明合成控制重量重量重量重量重量重量重量重量重量重量重量重量重量值的最大估计方法可以持续估计,我们将采用可重新研究方法。在德国的合成控制方法。