项目名称: 基于掺杂石墨烯/纳米金刚石核壳复合粒子的低铂与非铂催化剂的制备及其电催化性能

项目编号: No.51272226

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 王艳辉

作者单位: 燕山大学

项目金额: 80万元

中文摘要: 本项目在含有B、N原子的气氛中真空热处理或放电等离子体处理纳米金刚石(ND),制备表面B、N掺杂石墨烯(G)壳层包覆ND的掺杂G/ND核壳纳米复合粒子。以掺杂G/ND作为新型电催化剂载体材料,G壳层赋予其良好的导电性,ND芯部具有高热稳定性及化学稳定性,可避免传统石墨烯叠聚问题,构造可控的介孔通道,B、N掺杂可提高对氧还原反应的催化活性。采用非沸腾恒温水解在掺杂G/ND表面沉积纳米氧化物,制备高催化活性的氧还原非铂催化剂。掺杂G/ND作为Pt催化剂载体,通过掺杂及缺陷位对Pt粒子的锚定作用,提高Pt粒子的稳定性及分散性,减少Pt的装载量,获得高效稳定的低铂催化剂。本项目重点研究ND表面石墨烯转化及B、N掺杂机制,获得结构和性能可控的掺杂G/ND复合纳米粒子;探索掺杂G壳层与纳米氧化物或Pt金属的协同催化作用,设计制备低成本、高活性、高稳定的非铂或低铂电催化剂,促进燃料电池的广泛应用

中文关键词: 燃料电池;非铂催化剂;纳米金刚石;掺杂石墨烯;过渡金属氧化物

英文摘要: Core-shell structural doped graphene/nanodiamond (G/ND) composite with a ND core covered with B or N doped graphene layer is prepared by vacuum annealing ND or plasma treating ND in the B or N-contained atmosphere. The doped G/ND is expected to be a novel electrocatalyst support with an excellent conductivity originated from the graphene layer, high thermal and chemical stabilities attributed to the ND core, and a high catalytic activity for oxygen reduction reaction due to the B, N doping. The problem of the facile stack aggregate can be avoided and the controllable mesoporous channels would form when the doped G/ND is used as an electrode material instead of pure planar graphene. An isothermal hydrolyzing below boiling temperature is carried to deposit nano oxides on the doped G/ND aiming to prepare a platinum-free catalyst with a high catalytic activity and a high stability for oxygen reduction reaction. A low platinum electrocatalyst is designed using the doped G/ND as a support. An anchoring effect of the B or N doping and the defects in the graphene layer on Pt nanoparticles results in an improved stability and dispersity of Pt catalyst, as well as a reduced Pt loading. The research focuses on ND surface graphene transformation and B, N doping mechanism. The aim is to achieve controllable preparation of do

英文关键词: fuel cell;non-platinum electrocatalyst;nanodiamond;doped graphene;transition metal oxide

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
16+阅读 · 2021年10月11日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
24+阅读 · 2021年8月1日
专知会员服务
12+阅读 · 2021年7月16日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
15+阅读 · 2021年5月30日
专知会员服务
33+阅读 · 2021年5月7日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
46+阅读 · 2021年10月4日
小贴士
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
16+阅读 · 2021年10月11日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
24+阅读 · 2021年8月1日
专知会员服务
12+阅读 · 2021年7月16日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
15+阅读 · 2021年5月30日
专知会员服务
33+阅读 · 2021年5月7日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员