Generalized Zero-Shot Learning (GZSL) has emerged as a pivotal research domain in computer vision, owing to its capability to recognize objects that have not been seen during training. Despite the significant progress achieved by generative techniques in converting traditional GZSL to fully supervised learning, they tend to generate a large number of synthetic features that are often redundant, thereby increasing training time and decreasing accuracy. To address this issue, this paper proposes a novel approach for synthetic feature selection using reinforcement learning. In particular, we propose a transformer-based selector that is trained through proximal policy optimization (PPO) to select synthetic features based on the validation classification accuracy of the seen classes, which serves as a reward. The proposed method is model-agnostic and data-agnostic, making it applicable to both images and videos and versatile for diverse applications. Our experimental results demonstrate the superiority of our approach over existing feature-generating methods, yielding improved overall performance on multiple benchmarks.


翻译:摘要:通用零样本学习(GZSL)因其在识别训练中未出现的对象方面的能力而成为计算机视觉中至关重要的研究领域。尽管生成技术在将传统的GZSL转换为完全监督学习方面取得了重要进展,但它们往往会生成大量的合成特征,这些特征往往是冗余的,从而增加了训练时间并降低了准确性。为了解决这个问题,本文提出了一种使用增强学习进行合成特征选择的新方法。特别地,我们提出了一个基于Transformer的选择器,通过接近策略优化(PPO)进行训练,根据已见课程的验证分类准确性进行合成特征选择,这作为奖励。所提出的方法是模型不可知和数据不可知的,因此适用于图像和视频,并且可以用于各种应用。我们的实验结果表明,我们的方法优于现有的特征生成方法,在多个基准测试中产生了改进的整体性能。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【Google-CMU】元伪标签的元学习,Meta Pseudo Labels
专知会员服务
31+阅读 · 2020年3月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员