Studying causal effects of continuous treatments is important for gaining a deeper understanding of many interventions, policies, or medications, yet researchers are often left with observational studies for doing so. In the observational setting, confounding is a barrier to the estimation of causal effects. Weighting approaches seek to control for confounding by reweighting samples so that confounders are comparable across different treatment values. Yet, for continuous treatments, weighting methods are highly sensitive to model misspecification. In this paper we elucidate the key property that makes weights effective in estimating causal quantities involving continuous treatments. We show that to eliminate confounding, weights should make treatment and confounders independent on the weighted scale. We develop a measure that characterizes the degree to which a set of weights induces such independence. Further, we propose a new model-free method for weight estimation by optimizing our measure. We study the theoretical properties of our measure and our weights, and prove that our weights can explicitly mitigate treatment-confounder dependence. The empirical effectiveness of our approach is demonstrated in a suite of challenging numerical experiments, where we find that our weights are quite robust and work well under a broad range of settings.


翻译:连续暴露因素的因果效应研究对于深入了解许多干预、政策或药物的作用至关重要,但研究者通常只能使用观测研究来进行。在观测情况下,混杂是估计因果效应的障碍。加权方法通过对样本进行重新加权,使得不同处理值的混杂因素相互比较,从而控制混杂因素。对于连续暴露因素,加权方法对模型错误非常敏感。本文阐述了使加权方法能够估计涉及连续处理的因果量所必需的关键属性。我们发现为了消除混杂,加权值应该使处理和混杂因素在加权比例上相互独立。我们开发了一种度量,可以刻画一组加权值产生这种独立的度量。此外,我们提出了一种新的无模型方法来估算加权值,通过优化我们的度量。我们研究了我们的度量和加权值的理论性质,并证明我们的加权值可以明确缓解处理和混杂因素之间的依赖关系。我们在一系列具有挑战性的数值实验中展示了我们方法的实证有效性,并发现我们的加权值非常稳健,在广泛的设置下都能够良好地工作。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
因果效应估计组合拳:Reweighting和Representation
PaperWeekly
0+阅读 · 2022年9月2日
缺失数据统计分析,第三版,462页pdf
专知
46+阅读 · 2020年2月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
45+阅读 · 2022年9月19日
VIP会员
相关基金
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员