We present a novel mesh-based learning approach (N-Cloth) for plausible 3D cloth deformation prediction. Our approach is general and can handle cloth or obstacles represented by triangle meshes with arbitrary topologies. We use graph convolution to transform the cloth and object meshes into a latent space to reduce the non-linearity in the mesh space. Our network can predict the target 3D cloth mesh deformation based on the initial state of the cloth mesh template and the target obstacle mesh. Our approach can handle complex cloth meshes with up to 100K triangles and scenes with various objects corresponding to SMPL humans, non-SMPL humans or rigid bodies. In practice, our approach can be used to generate plausible cloth simulation at 30-45 fps on an NVIDIA GeForce RTX 3090 GPU. We highlight its benefits over prior learning-based methods and physically-based cloth simulators.
翻译:我们提出了一种新颖的基于网状的学习方法(N-Cloth),用于进行可信的三维布质变形预测。我们的方法是一般性的,可以处理带有任意地形的三角模头的布料或障碍。我们用图解变形法将布料和胶片变成一个潜在的空间,以减少网状空间的非线性。我们的网络可以根据布质网模样的初始状态和目标障碍网格预测目标3D布质变形。我们的方法可以处理布质变形法的复杂布料,其三角形和场景与SMPL人类、非SMPL人类或僵硬体的物体相匹配。在实践中,我们的方法可以用来在30-45英尺的NVDIDIA GeForce RTX 3090 GPU上产生可信的布质模拟。我们强调它对于先前的学习方法和基于物理的布质模拟器的好处。