With the recent advance of geometric deep learning, neural networks have been extensively used for data in non-Euclidean domains. In particular, hyperbolic neural networks have proved successful in processing hierarchical information of data. However, many hyperbolic neural networks are numerically unstable during training, which precludes using complex architectures. This crucial problem makes it difficult to build hyperbolic generative models for real and complex data. In this work, we propose a hyperbolic generative network in which we design novel architecture and layers to improve stability in training. Our proposed network contains three parts: first, a hyperbolic autoencoder (AE) that produces hyperbolic embedding for input data; second, a hyperbolic generative adversarial network (GAN) for generating the hyperbolic latent embedding of the AE from simple noise; third, a generator that inherits the decoder from the AE and the generator from the GAN. We call this network the hyperbolic AE-GAN, or HAEGAN for short. The architecture of HAEGAN fosters expressive representation in the hyperbolic space, and the specific design of layers ensures numerical stability. Experiments show that HAEGAN is able to generate complex data with state-of-the-art structure-related performance.
翻译:随着最近几何深层学习的进步,神经网络被广泛用于非欧洲域的数据,特别是双曲神经网络在处理数据等级信息方面证明是成功的。然而,许多双曲神经网络在培训期间数字不稳定,无法使用复杂的结构。这个关键问题使得难以为真实和复杂的数据建立双曲基因化模型。在这项工作中,我们提议建立一个超双曲基因化网络,我们在这个网络中设计新的结构和层次,以提高培训的稳定性。我们提议的网络包括三个部分:第一,一个双曲自动电解器(AE),为输入数据生成双曲嵌入;第二,一个高曲基因对抗网络(GAN),用简单的噪音生成超曲心潜嵌入自动神经网络;第三,一个发电机,从AE和GAN的发电机中继承解密器。我们称这个网络为超偏心AE-GAN,或HAEGAN,用于简短。HAEGAN的显示显示显示超偏心自动嵌嵌入数据结构的表层结构,确保与HAAAN相关的数字空间和具体设计结构的磁度。