We introduce CoLN, Combined Learning of Neural network weights, a novel method to securely combine Machine Learning models over sensitive data with no sharing of data. With CoLN, local hosts use the same Neural Network architecture and base parameters to train a model using only locally available data. Locally trained models are then submitted to a combining agent, which produces a combined model. The new model's parameters can be sent back to hosts, and can then be used as initial parameters for a new training iteration. CoLN is capable of combining several distributed neural networks of the same kind but is not restricted to any single neural architecture. In this paper we detail the combination algorithm and present experiments with feed-forward, convolutional, and recurrent Neural Network architectures, showing that the CoLN combined model approximates the performance of a hypothetical ideal centralized model, trained using the combination of the local datasets. CoLN can contribute to secure collaborative research, as required in the medical area, where privacy issues preclude data sharing, but where the limitations of local data demand information derived from larger datasets.
翻译:我们引入了COLN, 神经网络权重综合学习, 这是一种新颖的方法, 将机器学习模型与敏感数据结合而没有数据共享。 与 CoLN, 本地主机使用相同的神经网络架构和基准参数来培训仅使用本地可用数据的模型。 然后, 当地培训的模型被提交给一个联合代理商, 并产生一个联合模型。 新模型的参数可以被送回主机, 然后可以用作新的培训迭代的初始参数 。 COLN 能够将若干分布的同类神经网络合并, 但不局限于任何单一的神经结构 。 在本文中, 我们详细介绍了组合算法, 并提出了与饲料前、 聚合和经常性神经网络架构的实验, 表明COLN 组合模型与假设的理想集中模型的性能相近, 并使用本地数据集的组合进行了培训 。 COLN 能够按照医疗领域的要求, 安全的合作研究, 隐私问题排除了数据共享, 但当地数据要求从较大数据集获得信息的局限性 。