Current methods of blended targets domain adaptation (BTDA) usually infer or consider domain label information but underemphasize hybrid categorical feature structures of targets, which yields limited performance, especially under the label distribution shift. We demonstrate that domain labels are not directly necessary for BTDA if categorical distributions of various domains are sufficiently aligned even facing the imbalance of domains and the label distribution shift of classes. However, we observe that the cluster assumption in BTDA does not comprehensively hold. The hybrid categorical feature space hinders the modeling of categorical distributions and the generation of reliable pseudo labels for categorical alignment. To address these, we propose a categorical domain discriminator guided by uncertainty to explicitly model and directly align categorical distributions $P(Z|Y)$. Simultaneously, we utilize the low-level features to augment the single source features with diverse target styles to rectify the biased classifier $P(Y|Z)$ among diverse targets. Such a mutual conditional alignment of $P(Z|Y)$ and $P(Y|Z)$ forms a mutual reinforced mechanism. Our approach outperforms the state-of-the-art in BTDA even compared with methods utilizing domain labels, especially under the label distribution shift, and in single target DA on DomainNet.


翻译:混合目标领域适应(BTDA)的当前方法通常推断或考虑域标签信息,但低估了目标的混合绝对特征结构,从而产生有限的性能,特别是在标签分配变化的情况下。我们证明,如果各种领域的绝对分布充分一致,即使面临域的不平衡和类别标签分配的转移,即使面临域的不平衡和标签分配的变化,对域分布的当前方法也充分一致,则域标签对于BTDA并非直接必要。然而,我们注意到,BTDA的集群假设并不全面维持。混合绝对特征空间阻碍了绝对分布的模型的建模和可靠的假标签的生成,以绝对一致为目的。为了解决这些问题,我们提议在不确定因素指导下建立一个绝对的域名歧视者,以明确模型和直接对绝对分布($P(Y)美元)加以统一。同时,我们利用低级别特征来增强单一来源特征,以不同目标样式纠正不同目标中的偏向划线的$P(Y)美元和$(Y)美元。我们发现,这种条件性对$($)(Y ⁇ )形成一个相互强化的机制。我们的方法优于BTDA在使用域域网中的位置,甚至与使用域标签上的变化方法,特别是在DA目标分配方式之下。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员