Visual grounding is a task that aims to locate a target object according to a natural language expression. As a multi-modal task, feature interaction between textual and visual inputs is vital. However, previous solutions mainly handle each modality independently before fusing them together, which does not take full advantage of relevant textual information while extracting visual features. To better leverage the textual-visual relationship in visual grounding, we propose a Query-conditioned Convolution Module (QCM) that extracts query-aware visual features by incorporating query information into the generation of convolutional kernels. With our proposed QCM, the downstream fusion module receives visual features that are more discriminative and focused on the desired object described in the expression, leading to more accurate predictions. Extensive experiments on three popular visual grounding datasets demonstrate that our method achieves state-of-the-art performance. In addition, the query-aware visual features are informative enough to achieve comparable performance to the latest methods when directly used for prediction without further multi-modal fusion.


翻译:视觉地基是一项旨在根据自然语言表达方式定位目标对象的任务。 作为一个多模式的任务, 将文字和视觉投入之间的相互作用作为特点至关重要。 但是, 以前的解决方案主要在将每种模式混在一起之前独立处理, 而在提取视觉特征时没有充分利用相关的文字信息。 为了在视觉地基中更好地利用文字- 视觉关系, 我们提议了一个有一定条件的“ 问答模块 ” ( QCM ), 通过将查询信息纳入共进内核的生成中, 提取有查询觉识的视觉特征。 在我们提议的 QCM 中, 下游聚变聚变模块的视觉特征更具有歧视性, 侧重于表达式中描述的预期对象, 导致更准确的预测。 在三个流行的视觉地基数据集上进行的广泛实验表明, 我们的方法达到了最先进的性能。 此外, 查询- 视觉特征具有足够的信息, 足以实现与直接用于预测而没有进一步多模式融合的最新方法的可比性能。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
16+阅读 · 2021年11月27日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员