Tendon-actuated concentric tube mechanisms combine the advantages of tendon-driven continuum robots and concentric tube robots while addressing their respective limitations. They overcome the restricted degrees of freedom often seen in tendon-driven designs, and mitigate issues such as snapping instability associated with concentric tube robots. However, a complete and general mechanical model for these systems remains an open problem. In this work, we propose a Cosserat rod-based framework for modeling the general case of $n$ concentric tubes, each actuated by $m_i$ tendons, where $i = \{1, \ldots, n\}$. The model allows each tube to twist and elongate while enforcing a shared centerline for bending. We validate the proposed framework through experiments with two-tube and three tube assemblies under various tendon routing configurations, achieving tip prediction errors $<4\%$ of the robot's total length. We further demonstrate the model's generality by applying it to existing robots in the field, where maximum tip deviations remain around $5\%$ of the total length. This model provides a foundation for accurate shape estimation and control of advanced tendon-actuated concentric tube robots.
翻译:腱驱动同心管机构结合了腱驱动连续体机器人与同心管机器人的优势,同时解决了它们各自的局限性。该设计克服了腱驱动方案常见的自由度受限问题,并缓解了同心管机器人中存在的如屈曲失稳等问题。然而,针对这类系统的完整且通用的力学模型仍是一个待解决的开放性问题。在本研究中,我们提出了一种基于Cosserat杆理论的建模框架,用于描述具有$n$个同心管的一般情况,其中每个管由$m_i$根腱驱动,$i = \{1, \ldots, n\}$。该模型允许每个管发生扭转和伸长,同时强制所有管共享一条弯曲中心线。我们通过在不同腱布线配置下的双管和三管组件实验验证了所提框架,实现了末端预测误差小于机器人总长度的$4\%$。我们进一步将该模型应用于该领域现有的机器人,证明了其通用性,其中最大末端偏差保持在总长度约$5\%$的范围内。该模型为先进腱驱动同心管机器人的精确形状估计与控制提供了基础。