The Gromov-Hausdorff distance ($d_\mathrm{GH}$) provides a natural way of quantifying the dissimilarity between two given metric spaces. It is known that computing $d_\mathrm{GH}$ between two finite metric spaces is NP-hard, even in the case of finite ultrametric spaces which are highly structured metric spaces in the sense that they satisfy the so-called \emph{strong triangle inequality}. Ultrametric spaces naturally arise in many applications such as hierarchical clustering, phylogenetics, genomics, and even linguistics. By exploiting the special structures of ultrametric spaces, (1) we identify a one parameter family $\{d_\mathrm{GH}^{(p)}\}_{p\in[1,\infty]}$ of distances defined in a flavor similar to the Gromov-Hausdorff distance on the collection of finite ultrametric spaces, and in particular $d_\mathrm{GH}^{(1)} =d_\mathrm{GH}$. The extreme case when $p=\infty$, which we also denote by $u_\mathrm{GH}$, turns out to be an ultrametric on the collection of ultrametric spaces. Whereas for all $p\in[1,\infty)$, $d_\mathrm{GH}^{(p)}$ yields NP-hard problems, we prove that surprisingly $u_\mathrm{GH}$ can be computed in polynomial time. The proof is based on a structural theorem for $u_\mathrm{GH}$ established in this paper; (2) inspired by the structural theorem for $u_\mathrm{GH}$, and by carefully leveraging properties of ultrametric spaces, we also establish a structural theorem for $d_\mathrm{GH}$ when restricted to ultrametric spaces. This structural theorem allows us to identify special families of ultrametric spaces on which $d_\mathrm{GH}$ is computationally tractable. These families are determined by properties related to the doubling constant of metric space. Based on these families, we devise a fixed-parameter tractable (FPT) algorithm for computing the exact value of $d_\mathrm{GH}$ between ultrametric spaces. We believe ours is the first such algorithm to be identified.
翻译:Gromov- Hausdorf 距离 (d ⁇ m{mathrm{GH}}${matery{matery}}) 提供了一种自然的方法来量化两个特定空间之间的异差。已知在两个有限空间之间计算$d ⁇ mathr{GH}是硬的,即使是有限的超度空间是高度结构化的衡量空间,因为它们满足了所谓的超度空间的距离。超度空间自然出现在许多应用中,例如等级集群、物理系、基因系,甚至语言系。我们通过利用超度空间的特殊结构,(1)我们确定一个参数家族 $d{mathrm{g{gmm} 美元 美元 。对于固定空间的收集量来说, 基数(gromm-Hausdorf) 的距离, 特别是美元=mathrm{GHielm{g} (GHyral_ral_ma_materral_mayral_l_maxal_l_ma_max_l_l_ma_mamaxmaxal_mam_mam_l) maxl_max_mamax_mamamamaxl_maxl) rmaxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx