In the Geometric Median problem with outliers, we are given a finite set of points in d-dimensional real space and an integer m, the goal is to locate a new point in space (center) and choose m of the input points to minimize the sum of the Euclidean distances from the center to the chosen points. This problem can be solved "almost exactly" in polynomial time if d is fixed and admits an approximation scheme PTAS in high dimensions. However, the complexity of the problem was an open question. We prove that, if the dimension of space is not fixed, Geometric Median with outliers is strongly NP-hard, does not admit approximation schemes FPTAS unless P=NP, and is W[1]-hard with respect to the parameter m. The proof is done by a reduction from the Independent Set problem. Based on a similar reduction, we also get the NP-hardness of closely related geometric 2-clustering problems in which it is required to partition a given set of points into two balanced clusters minimizing the cost of median clustering. Finally, we study Geometric Median with outliers in $\ell_\infty$ space and prove the same complexity results as for the Euclidean problem.
翻译:在外部线的几何中值问题中,我们被赋予了在 d维实际空间和整整米中有限的一组点,目标是在空间中找到一个新的点(中点),并选择输入点的 m,以最大限度地减少从中点到选定点的欧几里德距离的总和。如果d是固定的,在多米时间里可以“几乎精确地”解决这个问题,并承认一个高维的近似方案PTAS。然而,问题的复杂性是一个尚未解决的问题。我们证明,如果空间的尺寸没有固定,则有外部线的几何中点非常坚硬,不接受FPTAS的近似方案,除非P=NP,并且对参数 m 来说是W[1]- 硬的。通过减少独立设置问题可以证明这个问题。根据类似的缩减,我们还得到了密切相关的几度2组问题NP的难度。在其中需要将一个给定的点分成两个平衡的组群,以最小的中位集成本。最后,我们研究Geologimmemememememedial Exlix 问题,以美元作为美元的复杂度证明。