In the current work we are concerned with sequences of graphs having a grid geometry, with a uniform local structure in a bounded domain $\Omega\subset {\mathbb R}^d$, $d\ge 1$. When $\Omega=[0,1]$, such graphs include the standard Toeplitz graphs and, for $\Omega=[0,1]^d$, the considered class includes $d$-level Toeplitz graphs. In the general case, the underlying sequence of adjacency matrices has a canonical eigenvalue distribution, in the Weyl sense, and it has been shown in the theoretical part of this work that we can associate to it a symbol $\boldsymbol{\mathfrak{f}}$. The knowledge of the symbol and of its basic analytical features provides key information on the eigenvalue structure in terms of localization, spectral gap, clustering, and global distribution. In the present paper, many different applications are discussed and various numerical examples are presented in order to underline the practical use of the developed theory. Tests and applications are mainly obtained from the approximation of differential operators via numerical schemes such as Finite Differences (FDs), Finite Elements (FEs), and Isogeometric Analysis (IgA). Moreover, we show that more applications can be taken into account, since the results presented here can be applied as well to study the spectral properties of adjacency matrices and Laplacian operators of general large graphs and networks, whenever the involved matrices enjoy a uniform local structure.


翻译:在目前的工作中,我们所关注的是具有网格几何的图表序列,在封闭域中具有统一的本地结构,$\Omega\subset {mathbrb R ⁇ d$,$d\ge$1美元。当$\Omega=[0,1美元,这种图表包括标准的托普利茨图,对于美元=[0,1美元],所考虑的类别包括美元水平的托普利茨图。在一般情况下,相近矩阵的基本序列在Weyl 意义上具有卡通性电子价值分布,在这项工作的理论部分中已经显示这一点,我们可以将其用作一个符号$\boldsymbol_mathfrak{f ⁇ $1美元。对于符号及其基本分析功能的了解提供了本地化、光谱差距、集成和全球分布方面的关键信息。在本文中,许多不同的应用和各种数字例子都用来强调在任何时间里程值上实际使用已发展起来的网络,只要我们就可以将一个符号符号符号作为符号的符号。 测试和应用程序可以显示,例如:我们所研究的金融结构的数值的数值的数值和数据结构的模型的模型,可以反映。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
239+阅读 · 2020年4月19日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
30+阅读 · 2020年4月15日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
239+阅读 · 2020年4月19日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
30+阅读 · 2020年4月15日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员