We present a novel class of projected methods, to perform statistical analysis on a data set of probability distributions on the real line, with the 2-Wasserstein metric. We focus in particular on Principal Component Analysis (PCA) and regression. To define these models, we exploit a representation of the Wasserstein space closely related to its weak Riemannian structure, by mapping the data to a suitable linear space and using a metric projection operator to constrain the results in the Wasserstein space. By carefully choosing the tangent point, we are able to derive fast empirical methods, exploiting a constrained B-spline approximation. As a byproduct of our approach, we are also able to derive faster routines for previous work on PCA for distributions. By means of simulation studies, we compare our approaches to previously proposed methods, showing that our projected PCA has similar performance for a fraction of the computational cost and that the projected regression is extremely flexible even under misspecification. Several theoretical properties of the models are investigated and asymptotic consistency is proven. Two real world applications to Covid-19 mortality in the US and wind speed forecasting are discussed.


翻译:我们提出了一套新的预测方法,用2-Wasserstein衡量标准,对真实线上概率分布的数据集进行统计分析。我们特别侧重于主元分析(PCA)和回归。为了定义这些模型,我们利用瓦塞尔斯坦空间与其薄弱的里曼尼结构密切相关的表示方式,将数据映射到合适的线性空间,并使用一个衡量预测操作器限制瓦西尔斯坦空间的结果。通过仔细选择切点,我们能够获得快速的经验方法,利用有限的B-spline近似值。作为我们方法的副产品,我们还能够为以前在五氯苯甲醚上的工作获得更快的例行程序,以供分发。我们通过模拟研究,将我们的方法与先前提议的方法进行比较,表明我们的预测五氯苯甲醚在计算成本的一小部分方面有相似的性能,而且预测的回归即使在具体错误的情况下也非常灵活。对模型的一些理论特性进行了调查,并证明这些模型的一贯性得到了证明。两个真实的世界应用于美国Covid-19死亡率和风速预报。

0
下载
关闭预览

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
42+阅读 · 2020年12月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
6+阅读 · 2017年11月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Extreme events evaluation using CRPS distributions
Arxiv
0+阅读 · 2022年2月1日
Arxiv
0+阅读 · 2022年1月31日
Arxiv
0+阅读 · 2022年1月28日
Arxiv
6+阅读 · 2018年3月12日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
6+阅读 · 2017年11月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员