Let $G$ be a strongly connected directed graph and $u,v,w\in V(G)$ be three vertices. Then $w$ strongly resolves $u$ to $v$ if there is a shortest $u$-$w$-path containing $v$ or a shortest $w$-$v$-path containing $u$. A set $R\subseteq V(G)$ of vertices is a strong resolving set for a directed graph $G$ if for every pair of vertices $u,v\in V(G)$ there is at least one vertex in $R$ that strongly resolves $u$ to $v$ and at least one vertex in $R$ that strongly resolves $v$ to $u$. The distances of the vertices of $G$ to and from the vertices of a strong resolving set $R$ uniquely define the connectivity structure of the graph. The Strong Metric Dimension of a directed graph $G$ is the size of a smallest strong resolving set for $G$. The decision problem Strong Metric Dimension is the question whether $G$ has a strong resolving set of size at most $r$, for a given directed graph $G$ and a given number $r$. In this paper we study undirected and directed co-graphs and introduce linear time algorithms for Strong Metric Dimension. These algorithms can also compute strong resolving sets for co-graphs in linear time.


翻译:$G$是一个紧密相连的直线图,$u,v,w\in V(G)美元为3个螺旋。然后,美元强烈地解决美元兑1美元,如果有一个最短的美元-美元路径,含有美元或最短的美元-美元-美元路径,包含美元美元。一套美元-美元-美元路径,一个固定的R\subseteq V(G)美元vertics(G)美元是一个强有力的解决方案,如果对每对直线图,$u,v\in V(G)美元,至少有1个螺旋为美元。如果每对一对直线图,则美元中至少有1个螺旋为美元;如果美元,那么美元强烈地解决美元兑1美元,至少1个螺旋为美元,其中含有美元或最短的美元路径; 硬度和直径的硬度的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直距之间的距离的距离距离距离距离为1个问题。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2022年1月28日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员