项目名称: (氧)氮化物光电极太阳能分解水制氢的研究
项目编号: No.21473090
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 有机化学
项目作者: 李朝升
作者单位: 南京大学
项目金额: 90万元
中文摘要: 半导体光电极材料可以利用太阳能分解水制氢,已成为当前国际材料领域所进行的重大前沿科学探索之一。本项目重点关注带隙在1.7-2.3 eV之间的(氧)氮化物半导体材料,探索高效光电极材料。本项目的主要研究内容为: (1)研究半导体光电极材料的能带结构和微结构对电荷分离效率影响规律。探索提高电荷分离效率的方法,以提高光电极材料的太阳能转换氢能效率(solar-to-hydrogen efficiency)。 (2)研究表面处理、表面修饰和电催化剂担载对光电极材料表面电荷注入效率的影响规律。揭示光电极材料中影响表面电荷注入效率的关键因素,探索提高表面电荷注入效率的方法,提高光电极材料的太阳能转换氢能效率。 (3)研究光电极材料的界面反应动力学机制,阐明光电极材料的表面光腐蚀机制。探索新型电催化剂,降低反应的过电势,提高反应速率和量子效率。探索提高光电极材料稳定性的方法。
中文关键词: (氧)氮化物;太阳能转换氢能效率;水分解;光电极;光电流
英文摘要: Nowadays, photoelectrochemical hydrogen production from water splitting via solar energy has become one of cutting-edge fields of materials science. This project focuses on (oxy)nitride semiconductor materials with band gaps of 1.7-2.3 eV, exploring efficient photoelectrode materials for solar hydrogen production. The main research contents of the project : (1) The effects of the band structure and micro-structure on the charge separation efficiency of (oxy)nitride photoelectrodes will be investigated. New approaches to increase the charge separation efficiency of semiconductor photoelectrode materials will be explored, for improving their solar-to-hydrogen efficiency. (2) The effect of surface treatment, surface modification, loading electrocatalyst on the surface charge injection efficiency will be studied. The key factors affecting the charge injection efficiency of the photoelectrodes will be disclosed, and new methods to increase the surface charge injection efficiency will be obtained, for enhancing the solar-to-hydrogen efficiency of photoelectrodes. (3) The kinetic mechanism of water splitting reaction over photoelectrodes will be researched, for elucidating the photochemical corrosion of the photoelectrodes. New electrocatalysts will be explored, for reducing the overpotential of the reaction and increasing the reaction rate. New strategies to enhance the durability of photoelectrodes will be researched.
英文关键词: (oxy)nitride;solar-to-hydrogen efficiency;water splitting;photoelectrode;photocurrent