This paper introduces an efficient patch-based computational module, coined Entropy-based Patch Encoder (EPE) module, for resource-constrained semantic segmentation. The EPE module consists of three lightweight fully-convolutional encoders, each extracting features from image patches with a different amount of entropy. Patches with high entropy are being processed by the encoder with the largest number of parameters, patches with moderate entropy are processed by the encoder with a moderate number of parameters, and patches with low entropy are processed by the smallest encoder. The intuition behind the module is the following: as patches with high entropy contain more information, they need an encoder with more parameters, unlike low entropy patches, which can be processed using a small encoder. Consequently, processing part of the patches via the smaller encoder can significantly reduce the computational cost of the module. Experiments show that EPE can boost the performance of existing real-time semantic segmentation models with a slight increase in the computational cost. Specifically, EPE increases the mIOU performance of DFANet A by 0.9% with only 1.2% increase in the number of parameters and the mIOU performance of EDANet by 1% with 10% increase of the model parameters.


翻译:本文引入了一个高效的基于补丁的计算模块, 以 Entropy 为基础创建的补丁补丁编码器( EPE) 模块, 用于资源限制的语义分解。 EPE 模块由三个轻量的全进化编码器组成, 每一个从含有不同量的酶的图像补丁中提取特征。 具有高酶的补丁正在由参数数量最多的编码器处理, 带有中性酶的补丁由编码器处理, 参数数量不多, 并且由最小的编码器处理低酶的补丁。 该模块的直觉如下: 由于高酶的补丁包含更多信息, 它们需要一种与低酶补丁不同的更多参数的编码器。 因此, 使用小的编码器处理部分补丁能够大大降低模块的计算成本。 实验显示, EPEPE 能够提高现有实时分解器模型的性能, 其计算成本略有增加。 具体地说, ERPEOI 的性能为 0. 10 % NSOI 的性能提高0. 的性能。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员